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bus2RLSpec
Create reinforcement learning data specifications for elements of a Simulink bus

Syntax
specs = bus2RLSpec(busName)
specs = bus2RLSpec(busName,Name,Value)

Description
specs = bus2RLSpec(busName) creates a set of reinforcement learning data
specifications from the Simulink® bus specified by busName. One specification element is
created for each leaf element in the bus. Use these specifications to define actions and
observations for a Simulink reinforcement learning environment.

specs = bus2RLSpec(busName,Name,Value) specifies options for creating
specifications using one or more Name,Value pair arguments.

Input Arguments
busName — Name of Simulink bus object
string | character vector

Name of Simulink bus object, specified as a string or character vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DiscreteElements',{'force',[-5 0 5]} sets the 'force' bus element
to be a discrete data specification with three possible values, -5, 0, and 5
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Model — Name of Simulink model
string | character vector

Name of the Simulink model, specified as the comma-separated pair consisting of
'Model' and a string or character vector. Specify the model name when the bus object is
defined in the model global workspace (for example, in a data dictionary) instead of the
MATLAB® workspace.

BusElementNames — Names of bus leaf elements
string array

Names of bus leaf elements for which to create specifications, specified as the comma-
separated pair consisting of BusElementNames' and a string array. To create
observation specifications for a subset of the elements in a Simulink bus object, specify
BusElementNames. If you do not specify BusElementNames, a data specification is
created for each leaf element in the bus.

Note Do not specify BusElementNames when creating specifications for action signals.
The RL Agent block must output the full bus signal.

DiscreteElements — Finite values for discrete bus elements
cell array of name-value pairs

Finite values for discrete bus elements, specified as the comma-separated pair consisting
of 'DiscreteElements' and a cell array of name-value pairs. Each name-value pair
consists of a bus leaf element name and an array of discrete values. The specified discrete
values must be castable to the data type of the specified action signal.

If you do not specify discrete values for an element specification, the element is
continuous.
Example: 'ActionDiscretElements',{'force',[-10 0 10],'torque',[-5 0
5]} specifies discrete values for the 'force' and 'torque' leaf elements of a bus
action signal.

Output Arguments
specs — Data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects
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Data specifications for reinforcement learning actions or observations, returned as one of
the following:

• rlNumericSpec object for a single continuous bus element
• rlFiniteSetSpec object for a single discrete bus element
• Array of data specification objects for multiple bus elements

By default, all data specifications for bus elements are rlNumericSpec objects. To create
a discrete specification for one or more bus elements, specify the element names using
the DiscreteElements name-value pair.

See Also
Blocks
RL Agent

Functions
createIntegratedEnv | rlFiniteSetSpec | rlNumericSpec | rlSimulinkEnv

Topics
“Create Simulink Environments for Reinforcement Learning”

Introduced in R2019a
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createGridWorld
Create a two-dimensional grid world for reinforcement learning

Syntax
GW = createGridWorld(m,n)
GW = createGridWorld(m,n,moves)

Description
GW = createGridWorld(m,n) creates a grid world GW of size m-by-n with default
actions of ['N';'S';'E';'W'].

GW = createGridWorld(m,n,moves) creates a grid world GW of size m-by-n with
actions specified by moves.

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South =
2, East = 3, West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.
5 The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).
6 All other actions result in -1 reward.
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First, create a GridWorld object using the createGridWorld function.

GW = createGridWorld(5,5)

GW = 
  GridWorld with properties:

          GridSize: [5 5]
      CurrentState: "[1,1]"
            States: [25x1 string]
           Actions: [4x1 string]
                 T: [25x25x4 double]
                 R: [25x25x4 double]
    ObstacleStates: [0x1 string]
    TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.
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GW.CurrentState = '[2,1]';
GW.TerminalStates = '[5,5]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

Update the state transition matrix for the obstacle states and set the jump rule over the
obstacle states.

updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;

Next, define the rewards in the reward transition matrix.

nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rlMDPEnv to create a grid world environment using the GridWorld object GW.

env = rlMDPEnv(GW)

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []

You can visualize the grid world environment using the plot function.

plot(env)
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Input Arguments
m — Number of rows of the grid world
scalar

Number of rows of the grid world, specified as a scalar.

n — Number of columns of the grid world
scalar

Number of columns of the grid world, specified as a scalar.
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moves — Action names
'Standard' (default) | 'Kings'

Action names, specified as either 'Standard' or 'Kings'. When moves is set to

• 'Standard', the actions are ['N';'S';'E';'W'].
• 'Kings', the actions are ['N';'S';'E';'W';'NE';'NW';'SE';'SW'].

Output Arguments
GW — Two-dimensional grid world
GridWorld object

Two-dimensional grid world, returned as a GridWorld object with properties listed
below. For more information, see “Create Custom Grid World Environments”.

GridSize — Size of the grid world
[m,n] vector

Size of the grid world, specified as a [m,n] vector.

CurrentState — Name of the current state
string

Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector of length m*n.

Actions — Action names
string vector

Action names, specified as a string vector. The length of the Actions vector is
determined by the moves argument.

Actions is a string vector of length:

• Four, if moves is specified as 'Standard'.

 createGridWorld
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• Eight, moves is specified as 'Kings'.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible
movements of the agent in an environment. State transition matrix T is a probability
matrix that indicates how likely the agent will move from the current state s to any
possible next state s' by performing action a. T is given by,

T s, s′, a   =  probability s′ s, a .

T is:

• A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
• A K-by-K-by-8 array, if moves is specified as 'Kings'.

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, determines how much reward the
agent receives after performing an action in the environment. R has the same shape and
size as state transition matrix T. Reward transition matrix R is given by,

r  =  R s, s′, a .

R is:

• A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
• A K-by-K-by-8 array, if moves is specified as 'Kings'.

ObstacleStates — State names that cannot be reached in the grid world
string vector

State names that cannot be reached in the grid world, specified as a string vector.

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector.
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See Also
rlMDPEnv | rlPredefinedEnv

Topics
“Create Custom Grid World Environments”
“Train Reinforcement Learning Agent in Basic Grid World”

Introduced in R2019a
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createIntegratedEnv
Create Simulink model for reinforcement learning, using reference model as environment

Syntax
env = createIntegratedEnv(refModel,newModel)
[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( ___ )

[ ___ ] = createIntegratedEnv( ___ ,Name,Value)

Description
env = createIntegratedEnv(refModel,newModel) creates a Simulink model with
the name specified by newModel and returns a reinforcement learning environment
object, env, for this model. The new model contains an RL Agent block and uses the
reference model refModel as a reinforcement learning environment for training the
agent specified by this block.

[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( ___ ) returns the
block path to the RL Agent block in the new model and the observation and action data
specifications for the reference model, obsInfo and actInfo, respectively.

[ ___ ] = createIntegratedEnv( ___ ,Name,Value) creates a model and
environment interface using port, observation, and action information specified using one
or more Name,Value pair arguments.

Input Arguments
refModel — Reference model name
string | character vector

Reference model name, specified as a string or character vector. The new Simulink model
uses this reference model as the dynamic model of the environment for reinforcement
learning.
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newModel — New model name
string | character vector

New model name, specified as a string or character vector. createIntegratedEnv
creates a Simulink model with this name, but does not save the model.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IsDonePortName',"stopSim" sets the stopSim port of the reference
model as the source of the isdone signal.

ObservationPortName — Reference model observation output port name
"observation" (default) | string | character vector

Reference model observation output port name, specified as the comma-separated pair
consisting of 'ObservationPortName' and a string or character vector. Specify
ObservationPortName when the name of the observation output port of the reference
model is not "observation".

ActionPortName — Reference model action input port name
"action" (default) | string | character vector

Reference model action input port name, specified as the comma-separated pair
consisting of 'ActionPortName' and a string or character vector. Specify
ActionPortName when the name of the action input port of the reference model is not
"action".

RewardPortName — Reference model reward output port name
"reward" (default) | string | character vector

Reference model reward output port name, specified as the comma-separated pair
consisting of 'RewardPortName' and a string or character vector. Specify
RewardPortName when the name of the reward output port of the reference model is not
"reward".

IsDonePortName — Reference model done flag output port name
"isdone" (default) | string | character vector
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Reference model done flag output port name, specified as the comma-separated pair
consisting of 'IsDonePortName' and a string or character vector. Specify
IsDonePortName when the name of the done flag output port of the reference model is
not "isdone".

ObservationBusElementNames — Names of observation bus leaf elements
string array

Names of observation bus leaf elements for which to create specifications, specified as a
string array. To create observation specifications for a subset of the elements in a
Simulink bus object, specify BusElementNames. If you do not specify
BusElementNames, a data specification is created for each leaf element in the bus.

ObservationBusElementNames is applicable only when the observation output port is a
bus signal.
Example: 'ObservationBusElementNames',["sin" "cos"] creates specifications
for the observation bus elements with the names "sin" and "cos".

ObservationDiscreteElements — Finite values for observation specifications
cell array of name-value pairs

Finite values for discrete observation specification elements, specified as the comma-
separated pair consisting of 'ObservationDiscreteElements' and a cell array of
name-value pairs. Each name-value pair consists of an element name and an array of
discrete values.

If the observation output port of the reference model is:

• A bus signal, specify the name of one of the leaf elements of the bus specified in by
ObservationBusElementNames

• Nonbus signal, specify the name of the observation port, as specified by
ObservationPortName

The specified discrete values must be castable to the data type of the specified
observation signal.

If you do not specify discrete values for an observation specification element, the element
is continuous.
Example: 'ObservationDiscretElements',{'observation',[-1 0 1]} specifies
discrete values for a nonbus observation signal with default port name observation.

1 Functions — Alphabetical List

1-14



Example: 'ObservationDiscretElements',{'gear',[-1 0 1 2],'direction',
[1 2 3 4]} specifies discrete values for the 'gear' and 'direction' leaf elements of
a bus action signal.

ActionDiscreteElements — Finite values for action specifications
cell array of name-value pairs

Finite values for discrete action specification elements, specified as the comma-separated
pair consisting of 'ActionDiscreteElements' and a cell array of name-value pairs.
Each name-value pair consists of an element name and an array of discrete values.

If the action input port of the reference model is:

• A bus signal, specify the name of a leaf element of the bus
• Nonbus signal, specify the name of the action port, as specified by ActionPortName

The specified discrete values must be castable to the data type of the specified action
signal.

If you do not specify discrete values for an action specification element, the element is
continuous.
Example: 'ActionDiscretElements',{'action',[-1 0 1]} specifies discrete
values for a nonbus action signal with default port name 'action'.
Example: 'ActionDiscretElements',{'force',[-10 0 10],'torque',[-5 0
5]} specifies discrete values for the 'force' and 'torque' leaf elements of a bus
action signal.

Output Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment interface, returned as an SimulinkEnvWithAgent
object.

agentBlock — Block path to the agent block
character vector
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Block path to the agent block in the new model, returned as a character vector. To train
an agent in the new Simulink model, you must create an agent and specify the agent
name in the RL Agent block indicated by agentBlock.

For more information on creating agents, see “Reinforcement Learning Agents”.

obsInfo — Observation data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Observation data specifications, returned as one of the following:

• rlNumericSpec object for a single continuous observation specification
• rlFiniteSetSpec object for a single discrete observation specification
• Array of data specification objects for multiple specifications

actInfo — Action data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Action data specifications, returned as one of the following:

• rlNumericSpec object for a single continuous action specification
• rlFiniteSetSpec object for a single discrete action specification
• Array of data specification objects for multiple action specifications

See Also
Blocks
RL Agent

Functions
bus2RLSpec | rlFiniteSetSpec | rlNumericSpec | rlSimulinkEnv

Topics
“Create Simulink Environments for Reinforcement Learning”

Introduced in R2019a
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createMDP
Create Markov decision process model

Syntax
MDP = createMDP(states,actions)

Description
MDP = createMDP(states,actions) creates a Markov decision process model with
the specified states and actions.

Examples

Create MDP model

Create an MDP model with eight states and two possible actions.

MDP = createMDP(8,["up";"down"]);

Specify the state transitions and their associated rewards.

% State 1 Transition and Reward
MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;
% State 2 Transition and Reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 Transition and Reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
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MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 Transition and Reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 Transition and Reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 Transition and Reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 Transition and Reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 Transition and Reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify the terminal states of the model.

MDP.TerminalStates = ["s7";"s8"];

Input Arguments
states — Model states
positive integer | string vector

Model states, specified as one of the following:

• Positive integer — Specify the number of model states. In this case, each state has a
default name, such as "s1" for the first state.

• String vector — Specify the state names. In this case, the total number of states is
equal to the length of the vector.
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actions — Model actions
positive integer | string vector

Model actions, specified as one of the following:

• Positive integer — Specify the number of model actions. In this case, each action has a
default name, such as "a1" for the first action.

• String vector — Specify the action names. In this case, the total number of actions is
equal to the length of the vector.

Output Arguments
MDP — MDP model
GenericMDP object

MDP model, returned as a GenericMDP object with the following properties.

CurrentState — Name of the current state
string

Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector with length equal to the number of states.

Actions — Action names
string vector

Action names, specified as a string vector with length equal to the number of actions.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible
movements of the agent in an environment. State transition matrix T is a probability
matrix that indicates how likely the agent will move from the current state s to any
possible next state s' by performing action a. T is given by:

T s, s′, a   =  probability s′ s, a .

 createMDP

1-19



T is an S-by-S-by-A array, where S is the number of states and A is the number of actions.

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, which determines how much reward
the agent receives after performing an action in the environment. R has the same shape
and size as state transition matrix T. The reward for moving from state s to state s' by
performing action a is given by:

r  =  R s, s′, a .

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector of state names.

See Also
createGridWorld | rlMDPEnv

Topics
“Train Reinforcement Learning Agent in MDP Environment”

Introduced in R2019a
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generatePolicyFunction
Package: rl.agent

Create function that evaluates trained policy of reinforcement learning agent

Syntax
generatePolicyFunction(agent)
generatePolicyFunction(agent,Name,Value)

Description
generatePolicyFunction(agent) creates a function that evaluates the learned policy
of the specified agent using default function, policy, and data file names. After generating
the policy evaluation function, you can:

• Generate code for the function using MATLAB Coder™ or GPU Coder™. For more
information, see “Deploy Trained Reinforcement Learning Policies”.

• Simulate the trained agent in Simulink using a MATLAB Function block.

generatePolicyFunction(agent,Name,Value) specifies the function, policy, and
data file names using one or more name-value pair arguments.

Examples

Create Policy Evaluation Function for PG Agent

Create and train a reinforcement learning agent. For this example, load the PG agent
trained in “Train PG Agent to Balance Cart-Pole System”.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent using default names.

 generatePolicyFunction
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generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function,
and the agentData.mat file, which contains the trained deep neural network actor.

To view the generated function, type:

type evaluatePolicy.m

For a given observation, the policy function evaluates a probability for each potential
action using the actor network. Then, the policy function randomly selects an action
based on these probabilities.

Since the actor network for this PG agent has a single input layer and single output layer,
you can generate code for this network using the Deep Learning Toolbox™ code
generation functionality. For more information, see “Deploy Trained Reinforcement
Learning Policies”.

Create Policy Evaluation Function for Q-Learning Agent

Create and train a reinforcement learning agent. For this example, load the Q-Learning
agent trained in “Train Reinforcement Learning Agent in Basic Grid World”.

load('basicGWQAgent.mat','qAgent')

Create a policy evaluation function for this agent, specifying the name of the agent data
file.

generatePolicyFunction(qAgent,'MATFileName',"policyFile.mat")

This command creates the evaluatePolicy.m file, which contains the policy function,
and the policyFile.mat file, which contains the trained Q table value function.

To view the generated function, type:

type evaluatePolicy.m

For a given observation, the policy function looks up the value function for each potential
action using the Q table. Then, the policy function selects the action for which the value
function is greatest.

1 Functions — Alphabetical List

1-22



You can generate code for this policy function using MATLAB Coder. For more
information, see “Deploy Trained Reinforcement Learning Policies”.

Create Policy Evaluation Function for DQN Network

Create and train a reinforcement learning agent. For this example, load the DQN agent
trained in “Train DQN Agent to Balance Cart-Pole System”.

load('MATLABCartpoleDQN.mat','agent')

Create a policy evaluation function for this agent, specifying the function and file name.

generatePolicyFunction(agent,'FunctionName',"computeAction")

This command creates the computeAction.m file, which contains the policy function,
and the agentData.mat file, which contains the trained deep neural network critic.

To view the generated function, type:

type computeAction.m

For a given observation, the policy function evaluates the observation-action value
function for each potential discrete action, using the critic network. Then, the policy
function selects the action that produces the largest predicted value function.

The Deep Learning Toolbox code generation functionality supports only networks with a
single input layer. Therefore, code generation is not supported for computeAction.m,
since the critic in a DQN agent has two input layers, one for the observation and one for
the action.

Input Arguments
agent — Trained reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDDPGAgent object | rlPGAgent object |
rlACAgent object

Trained reinforcement learning agent, specified as one of the following:

• rlQAgent object
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• rlSARSAAgent object
• rlDDPGAgent object
• rlACAgent object
• rlPGAgent object that estimates a baseline value function using a critic

Since Deep Learning Toolbox code generation and prediction functionality do not support
deep neural networks with more than one input layer, generatePolicyFunction does
not support the following agent configurations:

• DQN agent with deep neural network critic representations.
• Any agent with deep neural network actor or critic representations with multiple

observation input layers.

To train your agent, use the train function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FunctionName',"computeAction"

FunctionName — Name of the generated function
'evaluatePolicy' (default) | string | character vector

Name of the generated function, specified as the name-value pair consisting of
'FunctionName' and a string or character vector.

PolicyName — Name of the policy variable within the generated function
'policy' (default) | string | character vector

Name of the policy variable within the generated function, specified as the name-value
pair consisting of 'PolicyName' and a string or character vector.

MATFileName — Name of agent data file
'agentData' (default) | string | character vector

Name of the agent data file, specified as the name-value pair consisting of
'MATFileName' and a string or character vector.
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See Also
rlRepresentation | train

Topics
“Train Reinforcement Learning Agents”
“Reinforcement Learning Agents”
“Create Policy and Value Function Representations”
“Deploy Trained Reinforcement Learning Policies”

Introduced in R2019a
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getActionInfo
Obtain action data specifications from reinforcement learning environment or agent

Syntax
actInfo = getActionInfo(env)
actInfo = getActionInfo(agent)

Description
actInfo = getActionInfo(env) extracts action information from reinforcement
learning environment env.

actInfo = getActionInfo(agent) extracts action information from reinforcement
learning agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning
Environment

Extract action and observation information that you can use to create other environments
or agents.

The reinforcement learning environment for this example is the simple longitudinal
dynamics for ego car and lead car. The training goal is to make the ego car travel at a set
velocity while maintaining a safe distance from lead car by controlling longitudinal
acceleration (and braking). This example uses the same vehicle model as the “Adaptive
Cruise Control System Using Model Predictive Control” (Model Predictive Control
Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlACCMdl';
open_system(mdl);
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agentblk = [mdl '/RL Agent'];
% create the observation info
obsInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';
obsInfo.Description = 'information on velocity error and ego velocity';
% action Info
actInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actInfo.Name = 'acceleration';
% define environment
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlACCMdl"
        AgentBlock: "rlACCMdl/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'

The reinforcement learning environment env is a SimulinkWithAgent object with the
above properties.

Extract the action and observation information from the reinforcement learning
environment env.

actInfoExt = getActionInfo(env)

actInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: -3
     UpperLimit: 2
           Name: "acceleration"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: [3x1 double]
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     UpperLimit: [3x1 double]
           Name: "observations"
    Description: "information on velocity error and ego velocity"
      Dimension: [3 1]
       DataType: "double"

The action information contains acceleration values while the observation information
contains the velocity and velocity error values of the ego vehicle.

Input Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the action information has to be
extracted, specified as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink
Environments for Reinforcement Learning”.

agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object |
rlPGAgent object | rlACAgent object

Reinforcement learning agent from which the action information has to be extracted,
specified as one of the following objects:

• rlQAgent
• rlSARSAAgent
• rlDQNAgent
• rlDDPGAgent
• rlPGAgent
• rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning
Agents”.
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Output Arguments
actInfo — Action data specifications
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Action data specifications extracted from the reinforcement learning environment,
returned as an array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

See Also
getObservationInfo | rlACAgent | rlDDPGAgent | rlDQNAgent |
rlFiniteSetSpec | rlNumericSpec | rlPGAgent | rlQAgent | rlSARSAAgent

Topics
“Create Simulink Environments for Reinforcement Learning”
“Reinforcement Learning Agents”

Introduced in R2019a
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getActor
Package: rl.agent

Get actor representation from reinforcement learning agent

Syntax
actor = getActor(agent)

Description
actor = getActor(agent) returns the actor representation object for the specified
reinforcement learning agent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameterValues(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.
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actor = setLearnableParameterValues(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments
agent — Reinforcement learning agent
rlDDPGAgent object | rlPGAgent object | rlACAgent object

Reinforcement learning agent that contains an actor representation, specified as one of
the following:

• rlDDPGAgent object
• rlACAgent object
• rlPGAgent object

Output Arguments
actor — Actor representation
rlLayerRepresentation object | rlTableRepresentation object

Actor representation object, returned as one of the following:

• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

See Also
getCritic | getLearnableParameterValues | rlRepresentation | setActor |
setCritic | setLearnableParameterValues

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”
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Introduced in R2019a
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getCritic
Package: rl.agent

Get critic representation from reinforcement learning agent

Syntax
critic = getCritic(agent)

Description
critic = getCritic(agent) returns the critic representation object for the specified
reinforcement learning agent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameterValues(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.
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critic = setLearnableParameterValues(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Input Arguments
agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object |
rlPGAgent object | rlACAgent object

Reinforcement learning agent that contains a critic representation, specified as one of the
following:

• rlQAgent object
• rlSARSAAgent object
• rlDQNAgent object
• rlDDPGAgent object
• rlACAgent object
• rlPGAgent object that estimates a baseline value function using a critic

Output Arguments
critic — Critic representation
rlLayerRepresentation object | rlTableRepresentation object

Critic representation object, returned as one of the following:

• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

See Also
getActor | getLearnableParameterValues | rlRepresentation | setActor |
setCritic | setLearnableParameterValues
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Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getLearnableParameterValues
Package: rl.util

Obtain learnable parameter values from policy or value function representation

Syntax
val = getLearnableParameterValues(rep)

Description
val = getLearnableParameterValues(rep) returns the values of the learnable
parameters from the reinforcement learning policy or value function representation rep.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameterValues(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

1 Functions — Alphabetical List

1-36



critic = setLearnableParameterValues(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameterValues(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameterValues(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments
rep — Policy or value function representation
rlLayerRepresentation object | rlTableRepresentation object

Policy or value function representation, specified as one of the following:
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• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

To create a policy or value function representation, use one of the following methods:

• Create a representation using rlRepresentation.
• Obtain the existing value function representation from an agent using getCritic
• Obtain the existing policy representation from an agent using getActor.

Output Arguments
val — Learnable parameter values
cell array

Learnable parameter values for the representation object, returned as a cell array. You
can modify these parameter values and set them in the original agent or a different agent
using the setLearnableParameterValues function.

See Also
getActor | getCritic | rlRepresentation | setActor | setCritic |
setLearnableParameterValues

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getObservationInfo
Obtain observation data specifications from reinforcement learning environment or agent

Syntax
obsInfo = getObservationInfo(env)
obsInfo = getObservationInfo(agent)

Description
obsInfo = getObservationInfo(env) extracts observation information from
reinforcement learning environment env.

obsInfo = getObservationInfo(agent) extracts observation information from
reinforcement learning agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning
Environment

Extract action and observation information that you can use to create other environments
or agents.

The reinforcement learning environment for this example is the simple longitudinal
dynamics for ego car and lead car. The training goal is to make the ego car travel at a set
velocity while maintaining a safe distance from lead car by controlling longitudinal
acceleration (and braking). This example uses the same vehicle model as the “Adaptive
Cruise Control System Using Model Predictive Control” (Model Predictive Control
Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlACCMdl';
open_system(mdl);
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agentblk = [mdl '/RL Agent'];
% create the observation info
obsInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';
obsInfo.Description = 'information on velocity error and ego velocity';
% action Info
actInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actInfo.Name = 'acceleration';
% define environment
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlACCMdl"
        AgentBlock: "rlACCMdl/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'

The reinforcement learning environment env is a SimulinkWithAgent object with the
above properties.

Extract the action and observation information from the reinforcement learning
environment env.

actInfoExt = getActionInfo(env)

actInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: -3
     UpperLimit: 2
           Name: "acceleration"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: [3x1 double]
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     UpperLimit: [3x1 double]
           Name: "observations"
    Description: "information on velocity error and ego velocity"
      Dimension: [3 1]
       DataType: "double"

The action information contains acceleration values while the observation information
contains the velocity and velocity error values of the ego vehicle.

Input Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the observation information has to be
extracted, specified as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink
Environments for Reinforcement Learning”.

agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object |
rlPGAgent object | rlACAgent object

Reinforcement learning agent from which the observation information has to be
extracted, specified as one of the following objects:

• rlQAgent
• rlSARSAAgent
• rlDQNAgent
• rlDDPGAgent
• rlPGAgent
• rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning
Agents”.
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Output Arguments
obsInfo — Observation data specifications
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Observation data specifications extracted from the reinforcement learning environment,
returned as an array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

See Also
getActionInfo | rlACAgent | rlDDPGAgent | rlDQNAgent | rlFiniteSetSpec |
rlNumericSpec | rlPGAgent | rlQAgent | rlSARSAAgent

Topics
“Create Simulink Environments for Reinforcement Learning”
“Reinforcement Learning Agents”

Introduced in R2019a
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rlACAgent
Create actor-critic reinforcement learning agent

Syntax
agent = rlACAgent(actor,critic,opt)

Description
agent = rlACAgent(actor,critic,opt) creates an actor-critic (AC) agent with the
specified actor and critic networks, using the specified AC agent options. For more
information on AC agents, see “Actor-Critic Agents”.

Examples

Create Actor-Critic Agent

Create an environment interface and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

criticNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
    fullyConnectedLayer(1,'Name','CriticFC')];
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

Create an actor representation.

actorNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
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    fullyConnectedLayer(2,'Name','action')];
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},actorOpts);

Specify agent options, and create an AC agent using the environment, actor, and critic.

agentOpts = rlACAgentOptions(...
    'NumStepsToLookAhead',32, ...
    'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts);

Input Arguments
actor — Actor network representation
rlLayerRepresentation object

Actor network representation for representing the policy, specified as either an
rlLayerRepresentation or rlDLNetworkRepresentation object created using
rlRepresentation. For more information on creating actor representations, see
“Create Policy and Value Function Representations”.

critic — Critic network representation
rlLayerRepresentation object

Critic network representation for estimating the state-value function, specified as an
either an rlLayerRepresentation or rlDLNetworkRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlACAgentOptions object

Agent options, specified as an rlACAgentOptions object.

Output Arguments
agent — AC agent
rlACAgent object
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AC agent, returned as an rlACAgent object.

See Also
rlACAgentOptions | train

Topics
“Actor-Critic Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlACAgentOptions
Create options for AC agent

Syntax
opt = rlACAgentOptions
opt = rlACAgentOptions(Name,Value)

Description
opt = rlACAgentOptions creates an rlACAgentOptions object for use as an
argument when creating an AC agent using all default settings. You can modify the object
properties using dot notation.

opt = rlACAgentOptions(Name,Value) creates an AC agent options object using the
specified name-value pairs to override default property values.

Examples

Create AC Agent Options Object

Create an AC agent options object, specifying the discount factor.

opt = rlACAgentOptions('DiscountFactor',0.95)

opt = 
  rlACAgentOptions with properties:

    NumStepsToLookAhead: 1
      EntropyLossWeight: 0
             SampleTime: 1
         DiscountFactor: 0.9500

You can modify options using dot notation. For example, set the agent sample time to 0.5.
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opt.SampleTime = 0.5;

Configure Options for A3C Training

To train an agent using the asynchronous advantage actor-critic (A3C) method, you must
set the agent and parallel training options appropriately.

When creating the AC agent, set the NumStepsToLookAhead value to be greater than 1.
Common values are 64 and 128.

agentOpts = rlACAgentOptions('NumStepsToLookAhead',64);

Use agentOpts when creating your agent.

Configure the training algorithm to use asynchronous parallel training.

trainOpts = rlTrainingOptions('UseParallel',true);
trainOpts.ParallelizationOptions.Mode = "async";

Configure the workers to return gradient data to the host. Also, set the number of steps
before the workers send data back to the host to match the number of steps to look
ahead.

trainOpts.ParallelizationOptions.DataToSendFromWorkers = "gradients";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = agentOpts.NumStepsToLookAhead;

Use trainOpts when training your agent.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DiscountFactor',0.95
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NumStepsToLookAhead — Number of steps ahead
1 (default) | numeric value

Number of steps to look ahead in model training, specified as the comma-separated pair
consisting of 'NumStepsToLookAhead' and a numeric positive integer value. For AC
agents, the number of steps to look ahead corresponds to the training episode length.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as the comma-separated pair consisting of
'EntropyLossWeight' and a scalar value between 0 and 1, inclusive. A higher loss
weight value promotes agent exploration by applying a penalty for being too certain about
which action to take. Doing so can help the agent move out of local optima.

The entropy loss function for episode step t is:

Ht = E ∑
k = 1

M
μk St θμ lnμk St θμ

Here:

• E is the entropy loss weight.
• M is the number of possible actions.
• μk(St) is the probability of taking action Ak when in state St following the current

policy.

When gradients are computed during training, an additional gradient component is
computed for minimizing this loss function.

SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor
0.99 (default) | numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.
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Output Arguments
opt — AC agent options
rlACAgentOptions object

AC agent options, returned as an rlACAgentOptions object. The object properties are
described in “Name-Value Pair Arguments” on page 1-47.

See Also
Functions
rlACAgent

Topics
“Actor-Critic Agents”

Introduced in R2019a
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rlCreateEnvTemplate
Create custom reinforcement learning environment template

Syntax
rlCreateEnvTemplate(className)

Description
rlCreateEnvTemplate(className) creates and opens a MATLAB script that contains
a template class representing a reinforcement learning environment. The template class
contains an implementation of a simple cart-pole balancing environment. To define your
custom environment, modify this template class. For more information, see “Create
Custom MATLAB Environment from Template”.

Examples

Create Custom Environment Template File
Create and open a template file for a reinforcement learning environment. Name the class
myEnvironment.

rlCreateEnvTemplate("myEnvironment")

This function opens a MATLAB script that contains the class. Modify this template class,
and save the file as myEnvironment.m.

Input Arguments
className — Name of environment class
string | character vector
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Name of environment class, specified as a string or character vector. This name defines
the name of the class and the name of the MATLAB script.

See Also

Topics
“Create MATLAB Environments for Reinforcement Learning”

Introduced in R2019a
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rlDDPGAgent
Create deep deterministic policy gradient reinforcement learning agent

Syntax
agent = rlDDPGAgent(actor,critic,opt)

Description
agent = rlDDPGAgent(actor,critic,opt) creates a DDPG agent with the specified
actor and critic networks, using the specified DDPG agent options. For more information
on DDPG agents, see “Deep Deterministic Policy Gradient Agents”.

Examples

Create a DDPG Agent

Create a DDPG agent with actor and critic and obtain its observation and action
specifications.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo);

Create a critic representation.
statePath = imageInputLayer([numObservations 1 1], 'Normalization', 'none', 'Name', 'state');
actionPath = imageInputLayer([numActions 1 1], 'Normalization', 'none', 'Name', 'action');
commonPath = [concatenationLayer(1,2,'Name','concat')
             quadraticLayer('Name','quadratic')
             fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor', 0, 'Bias', 0)];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'state','concat/in1');
criticNetwork = connectLayers(criticNetwork,'action','concat/in2');
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criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},criticOpts);

Create an actor representation.
actorNetwork = [
    imageInputLayer([numObservations 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(numActions, 'Name', 'action', 'BiasLearnRateFactor', 0, 'Bias', 0)];
actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},actorOpts);

Specify agent options, and create a PG agent using the environment, actor, and critic.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',env.Ts,...
    'TargetSmoothFactor',1e-3,...
    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'MiniBatchSize',32);
agent = rlDDPGAgent(actor,critic,agentOpts);

Input Arguments
actor — Actor network representation
rlLayerRepresentation object

Actor network representation, specified as an rlLayerRepresentation object created
using rlRepresentation. For more information on creating actor representations, see
“Create Policy and Value Function Representations”.

critic — Critic network representation
rlLayerRepresentation object

Critic network representation, specified as an rlLayerRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlDDPGAgentOptions object

Agent options, specified as an rlDDPGAgentOptions object.
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Output Arguments
agent — DDPG agent
rlDDPGAgent object

DDPG agent, returned as an rlDDPGAgent object.

See Also
rlDDPGAgentOptions | train

Topics
“Deep Deterministic Policy Gradient Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlDDPGAgentOptions
Create options for DDPG agent

Syntax
opt = rlDDPGAgentOptions
opt = rlDDPGAgentOptions(Name,Value)

Description
opt = rlDDPGAgentOptions creates an rlDDPGAgentOptions object for use as an
argument when creating a DDPG agent using all default options. You can modify the
object properties using dot notation.

opt = rlDDPGAgentOptions(Name,Value) creates a DDPG options object using the
specified name-value pairs to override default property values.

Examples

Create DDPG Agent Options Object

Create an rlDDPGAgentOptions object that specifies the mini-batch size.

opt = rlDDPGAgentOptions('MiniBatchSize',48)

opt = 

  rlDDPGAgentOptions with properties:

                           NoiseOptions: [1×1 rl.option.OrnsteinUhlenbeckActionNoise]
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 4
                     TargetUpdateMethod: "smoothing"
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                          MiniBatchSize: 48
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
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                             SampleTime: 1
                         DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "MiniBatchSize",24

NoiseOptions — Options for noise
OrnsteinUhlenbeckActionNoise object

Options for noise, specified as the comma-separated pair consisting of 'NoiseOptions'
and an OrnsteinUhlenbeckActionNoise object, with the following numeric value
properties.

Property Description
InitialAction Initial value of action for noise model
Mean Noise model mean
MeanAttractionConstant Constant specifying how quickly the noise

model output is attracted to the mean
Variance Noise model variance
VarianceDecayRate Decay rate of the variance

At each sample time step, the noise model is updated using the following formula, where
Ts is the agent sample time.

x(k) = x(k-1) + MeanAttractionConstant.*(Mean - x(k-1)).*Ts
       + Variance.*randn(size(Mean)).*sqrt(Ts)

1 Functions — Alphabetical List

1-56



To specify noise options, use dot notation after creating the rlDDPGAgentOptions
object. For example, set the noise mean to 0.5.
opt = rlDDPGAgentOptions;
opt.NoiseModel.Mean = 0.5;

For continuous action signals, it is important to set the noise variance appropriately to
encourage exploration. It is common to have Variance*sqrt(Ts) be between 1% and
10% of your action range.

If your agent converges on local optima too quickly, promote agent exploration by
increasing the amount of noise; that is, by increasing the variance. Also, to increase
exploration, you can reduce the VarianceDecayRate.

TargetSmoothFactor — Smoothing factor for target updates
1e-3 (default) | double

Smoothing factor for target actor and critic updates, specified as the comma-separated
pair consisting of 'TargetSmoothFactor' and a double. The smoothing factor
determines how the target properties are updated when TargetUpdateMethod is
"smoothing".

TargetUpdateFrequency — Number of episodes between target updates
4 (default) | numeric value

Number of episodes between target actor and critic updates, specified as the comma-
separated pair consisting of 'TargetUpdateFrequency' and a numeric integer value.
This option applies only when TargetUpdateMethod is "periodic".

TargetUpdateMethod — Strategy for updating target actor and critic properties
"smoothing" (default) | "periodic"

Strategy for updating target actor and critic properties using values from the trained
actor and critic, specified as the comma-separated pair consisting of
'TargetUpdateMethod' and one of the following:

• "smoothing" — Update the target actor and critic properties, thetaTarget, at
every training episode according to the following formula, where theta contains the
current trained network properties.
thetaTarget = TargetSmoothFactor*theta + (1 - TargetSmoothFactor)*thetaTarget

• "periodic" — Update the target actor and critic properties every
TargetUpdateFrequency training episodes.
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ResetExperienceBufferBeforeTraining — Flag for clearing the experience
buffer
true (default) | false

Flag for clearing the experience buffer before training, specified as the comma-separated
pair consisting of 'ResetExperienceBufferBeforeTraining' and a logical true or
false.

SaveExperienceBufferWithAgent — Flag for saving the experience buffer
false (default) | true

Flag for saving the experience buffer data when saving the agent, specified as the
comma-separated pair consisting of 'SaveExperienceBufferWithAgent' and a logical
true or false. This option applies both when saving candidate agents during training
and when saving agents using the save function.

For some agents, such as those with a large experience buffer and image-based
observations, the memory required for saving their experience buffer is large. In such
cases, to not save the experience buffer data, set SaveExperienceBufferWithAgent to
false.

If you plan to further train your saved agent, you can start training with the previous
experience buffer as a starting point. In this case, set
SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | numeric value

Size of random experience mini-batch, specified as the comma-separated pair consisting
of 'MiniBatchSize' and a positive numeric value. During each training episode, the
agent randomly samples experiences from the experience buffer when computing
gradients for updating the critic properties. Large mini-batches reduce the variance when
computing gradients but increase the computational effort.

NumStepsToLookAhead — Number of steps ahead
1 (default) | numeric value

Number of steps to look ahead during training, specified as the comma-separated pair
consisting of 'NumStepsToLookAhead' and a numeric positive integer value.

ExperienceBufferLength — Experience buffer size
10000 (default) | numeric value

1 Functions — Alphabetical List

1-58



Experience buffer size, specified as the comma-separated pair consisting of
'ExperienceBufferLength' and a numeric positive integer value. During training, the
agent updates the actor and critic using a mini-batch of experiences randomly sampled
from the buffer.

SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor
0.99 (default) | numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.

Output Arguments
opt — DDPG agent options
rlDDPGAgentOptions object

DDPG agent options, returned as an rlDDPGAgentOptions object. The object properties
are described in “Name-Value Pair Arguments” on page 1-56.

See Also
Functions
rlDDPGAgent

Topics
“Deep Deterministic Policy Gradient Agents”

Introduced in R2019a
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rlDQNAgent
Create deep Q-network reinforcement learning agent

Syntax
agent = rlDQNAgent(critic,opt)

Description
agent = rlDQNAgent(critic,opt) creates a DQN agent with the specified critic
network and DQN agent options. For more information on DQN agents, see “Deep Q-
Network Agents”.

Examples

Create a DQN Agent

Create an environment interface and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.
statePath = [
    imageInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC1')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC2')];
actionPath = [
    imageInputLayer([1 1 1], 'Normalization', 'none', 'Name', 'action')
    fullyConnectedLayer(24, 'Name', 'CriticActionFC1')];
commonPath = [
    additionLayer(2,'Name', 'add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1, 'Name', 'output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
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criticNetwork = addLayers(criticNetwork, commonPath);    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
criticOpts = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},criticOpts);

Specify agent options, and create a DQN agent using the environment and critic.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...    
    'TargetUpdateMethod',"periodic", ...
    'TargetUpdateFrequency',4, ...   
    'ExperienceBufferLength',100000, ...
    'DiscountFactor',0.99, ...
    'MiniBatchSize',256);
agent = rlDQNAgent(critic,agentOpts);

Input Arguments
critic — Critic network representation
rlLayerRepresentation object

Critic network representation, specified as an rlLayerRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlDQNAgentOptions object

Agent options, specified as an rlDQNAgentOptions object.

Output Arguments
agent — DQN agent
rlDQNAgent object

DQN agent, returned as an rlDQNAgent object.

See Also
rlDQNAgentOptions | train
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Topics
“Deep Q-Network Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlDQNAgentOptions
Create options for DQN agent

Syntax
opt = rlDQNAgentOptions
opt = rlDQNAgentOptions(Name,Value)

Description
opt = rlDQNAgentOptions creates an rlDQNAgentOptions object for use as an
argument when creating a DQN agent using all default settings. You can modify the
object properties using dot notation.

opt = rlDQNAgentOptions(Name,Value) creates a DQN options object using the
specified name-value pairs to override default property values.

Examples

Create DQN Agent Options Object

Create an rlDQNAgentOptions object that specifies the agent mini-batch size.

opt = rlDQNAgentOptions('MiniBatchSize',48)

opt = 

  rlDQNAgentOptions with properties:

                           UseDoubleDQN: 1
               EpsilonGreedyExploration: [1×1 rl.option.EpsilonGreedyExploration]
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 4
                     TargetUpdateMethod: "smoothing"
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                          MiniBatchSize: 48
                    NumStepsToLookAhead: 1
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                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "UseDoubleDQN",false

UseDoubleDQN — Flag for using double DQN
true (default) | false

Flag for using double DQN for value function target updates, specified as the comma-
separated pair consisting of 'UseDoubleDQN' and a logical true or false. For most
application set UseDoubleDQN to "on". For more information, see “Deep Q-Network
Agents”.

EpsilonGreedyExploration — Options for epsilon-greedy exploration
EpsilonGreedyExploration object

Options for epsilon-greedy exploration, specified as the comma-separated pair consisting
of 'EpsilonGreedyExploration' and an EpsilonGreedyExploration object with
the following numeric value properties.
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Property Description
Epsilon Probability threshold to either randomly

select an action or select the action that
maximizes the state-action value function. A
larger value of Epsilon means that the
agent randomly explores the action space
at a higher rate.

EpsilonMin Minimum value of Epsilon
EpsilonDecay Decay rate

At the end of each training time step, if Epsilon is greater than EpsilonMin, then it is
updated using the following formula.

Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the rlDQNAgentOptions
object. For example, set the epsilon value to 0.9.
opt = rlDQNAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;

If your agent converges on local optima too quickly, promote agent exploration by
increasing Epsilon.

TargetSmoothFactor — Smoothing factor for target updates
1e-3 (default) | double

Smoothing factor for target critic updates, specified as the comma-separated pair
consisting of 'TargetSmoothFactor' and a double. The smoothing factor determines
how the target critic properties are updated when TargetUpdateMethod is
"smoothing".

TargetUpdateFrequency — Number of episodes between target updates
4 (default) | numeric value

Number of episodes between target critic updates, specified as the comma-separated pair
consisting of 'TargetUpdateFrequency' and a numeric integer value. This option
applies only when TargetUpdateMethod is "periodic".

TargetUpdateMethod — Strategy for updating target critic properties
"smoothing" (default) | "periodic"
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Strategy for updating target critic properties using values from the trained actor and
critic, specified as the comma-separated pair consisting of 'TargetUpdateMethod' and
one of the following:

• "smoothing" — Update the target critic properties, thetaTarget, at every training
episode according to the following formula, where theta is are the current trained
network properties:
thetaTarget = TargetSmoothFactor*theta + (1 - TargetSmoothFactor)*thetaTarget

• "periodic" — Update the target critic properties every TargetUpdateFrequency
training episodes.

ResetExperienceBufferBeforeTraining — Flag for clearing the experience
buffer
true (default) | false

Flag for clearing the experience buffer before training, specified as the comma-separated
pair consisting of 'ResetExperienceBufferBeforeTraining' and a logical true or
false.

SaveExperienceBufferWithAgent — Flag for saving the experience buffer
false (default) | true

Flag for saving the experience buffer data when saving the agent, specified as the
comma-separated pair consisting of 'SaveExperienceBufferWithAgent' and a logical
true or false. This option applies both when saving candidate agents during training
and when saving agents using the save function.

For some agents, such as those with a large experience buffer and image-based
observations, the memory required for saving their experience buffer is large. In such
cases, to not save the experience buffer data, set SaveExperienceBufferWithAgent to
false.

If you plan to further train your saved agent, you can start training with the previous
experience buffer as a starting point. In this case, set
SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | numeric value

Size of random experience mini-batch, specified as the comma-separated pair consisting
of 'MiniBatchSize' and a positive numeric value. During each training episode, the
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agent randomly samples experiences from the experience buffer when computing
gradients for updating the actor and critic properties.

NumStepsToLookAhead — Number of steps ahead
1 (default) | numeric value

Number of steps to look ahead during training, specified as the comma-separated pair
consisting of 'NumStepsToLookAhead' and a numeric positive integer value.

ExperienceBufferLength — Experience buffer size
10000 (default) | numeric value

Experience buffer size, specified as the comma-separated pair consisting of
'ExperienceBufferLength' and a numeric positive integer value. During training, the
agent updates the critic using a mini-batch of experiences randomly sampled from the
buffer.

In general, agents need to learn from both good and bad experiences. Specify an
experience buffer size that is able to store enough experience for learning.

SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor applied to rewards
0.99 (default) | numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.

Output Arguments
opt — DQN agent options
rlDQNAgentOptions object

DQN agent options, returned as an rlDQNAgentOptions object. The object properties
are described in “Name-Value Pair Arguments” on page 1-64.
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See Also
Functions
rlDQNAgent

Topics
“Deep Q-Network Agents”

Introduced in R2019a
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rlPGAgent
Create policy gradient reinforcement learning agent

Syntax
agent = rlPGAgent(actor)
agent = rlPGAgent(actor,critic)
agent = rlPGAgent( ___ ,opt)

Description
agent = rlPGAgent(actor) creates a PG agent with the specified actor network. By
default, the UseBaseline property of the agent is false for this case. For more
information on PG agents, see “Policy Gradient Agents”.

agent = rlPGAgent(actor,critic) creates a PG agent with the specified actor and
critic networks. By default, the UseBaseline option is true for this case.

agent = rlPGAgent( ___ ,opt) creates a PG agent using the specified agent options
to override the agent defaults.

Examples

Create a PG Agent

Create an environment interface.

env = rlPredefinedEnv("DoubleIntegrator-Discrete");
obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo);

Create a critic representation to use as a baseline.
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baselineNetwork = [
    imageInputLayer([numObservations 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(8, 'Name', 'BaselineFC')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(1, 'Name', 'BaselineFC2', 'BiasLearnRateFactor', 0)];
baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);
baseline = rlRepresentation(baselineNetwork,baselineOpts,'Observation',{'state'},obsInfo);

Create an actor representation.
actorNetwork = [
    imageInputLayer([numObservations 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(numActions, 'Name', 'action', 'BiasLearnRateFactor', 0)];
actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);
actor = rlRepresentation(actorNetwork,actorOpts,...
    'Observation',{'state'},obsInfo,'Action',{'action'},actInfo);

Specify agent options, and create a PG agent using the environment, actor, and critic.

agentOpts = rlPGAgentOptions(...
    'UseBaseline',true, ...
    'DiscountFactor', 0.99);
agent = rlPGAgent(actor,baseline,agentOpts);

Input Arguments
actor — Actor network representation
rlLayerRepresentation object

Actor network representation, specified as an rlLayerRepresentation object created
using rlRepresentation. For more information on creating actor representations, see
“Create Policy and Value Function Representations”.

critic — Critic network representation
rlLayerRepresentation object

Critic network representation, specified as an rlLayerRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlPGAgentOptions object

Agent options, specified as an rlPGAgentOptions object.
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Output Arguments
agent — PG agent
rlPGAgent

PG agent, returned as an rlPGAgent object.

See Also
rlPGAgentOptions | train

Topics
“Policy Gradient Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlPGAgentOptions
Create options for PG agent

Syntax
opt = rlPGAgentOptions
opt = rlPGAgentOptions(Name,Value)

Description
opt = rlPGAgentOptions creates an rlPGAgentOptions object for use as an
argument when creating a PG agent using all default settings. You can modify the object
properties using dot notation.

opt = rlPGAgentOptions(Name,Value) creates a PG options object using the
specified name-value pairs to override default property values.

Examples

Create PG Agent Options Object

Create a PG agent options object, specifying the discount factor.

opt = rlPGAgentOptions('DiscountFactor',0.9)

opt = 

  rlPGAgentOptions with properties:

          UseBaseline: 1
    EntropyLossWeight: 0
           SampleTime: 1
       DiscountFactor: 0.9000

You can modify options using dot notation. For example, set the agent sample time to 0.5.
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opt.SampleTime = 0.5;

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "DiscountFactor",0.95

UseBaseline — Use baseline for learning
true (default) | false

Instruction to use baseline for learning, specified as the comma-separated pair consisting
of 'UseBaseline' and logical true or false. WhenUseBaseline is true, you must
specify a critic network as the baseline function approximator.

In general, for simpler problems with smaller actor networks, PG agents work better
without a baseline.

SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor
0.99 | numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as the comma-separated pair consisting of
'EntropyLossWeight' and a scalar value between 0 and 1. A higher loss weight value
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promotes agent exploration by applying a penalty for being too certain about which action
to take. Doing so can help the agent move out of local optima.

The entropy loss function for episode step t is:

Ht = E ∑
k = 1

M
μk St θμ lnμk St θμ

Here:

• E is the entropy loss weight.
• M is the number of possible actions.
• μk(St) is the probability of taking action Ak following the current policy.

When gradients are computed during training, an additional gradient component is
computed for minimizing this loss function.

Output Arguments
opt — PG agent options
rlPGAgentOptions

PG agent options, returned as an rlPGAgentOptions object. The object properties are
described in “Name-Value Pair Arguments” on page 1-73.

See Also
Functions
rlPGAgent

Topics
“Policy Gradient Agents”

Introduced in R2019a
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rlPPOAgent
Create proximal policy optimization reinforcement learning agent

Syntax
agent = rlPPOAgent(actor,critic,opt)

Description
agent = rlPPOAgent(actor,critic,opt) creates an proximal policy optimization
(PPO) agent with the specified actor and critic networks, using the specified PPO agent
options. For more information on PPO agents, see “Proximal Policy Optimization Agents”.

Examples

Create Proximal Policy Optimization Agent

Create an environment interface, and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

criticNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
    fullyConnectedLayer(1,'Name','CriticFC')];
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

Create an actor representation.

actorNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
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    fullyConnectedLayer(2,'Name','action')];
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},actorOpts);

Specify agent options, and create a PPO agent using the environment, actor, and critic.

agentOpts = rlPPOAgentOptions(...
    'ExperienceHorizon',1024, ...
    'DiscountFactor',0.95);
agent = rlPPOAgent(actor,critic,agentOpts);

Input Arguments
actor — Actor network representation
rlLayerRepresentation object | rlDLNetworkRepresentation object

Actor network representation for representing the policy, specified as either an
rlLayerRepresentation or rlDLNetworkRepresentation object created using
rlRepresentation. For more information on creating actor representations, see
“Create Policy and Value Function Representations”.

critic — Critic network representation
rlLayerRepresentation object | rlDLNetworkRepresentation object

Critic network representation for estimating the state-value function, specified as an
either an rlLayerRepresentation or rlDLNetworkRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlPPOAgentOptions object

Agent options, specified as an rlPPOAgentOptions object.

Output Arguments
agent — PPO agent
rlPPOAgent object
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PPO agent, returned as an rlPPOAgent object.

See Also
rlPPOAgentOptions | train

Topics
“Proximal Policy Optimization Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019b
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rlPPOAgentOptions
Create options for PPO agent

Syntax
opt = rlPPOAgentOptions
opt = rlPPOAgentOptions(Name,Value)

Description
opt = rlPPOAgentOptions creates an rlPPOAgentOptions object for use as an
argument when creating a PPO agent using all default settings. You can modify the object
properties using dot notation.

opt = rlPPOAgentOptions(Name,Value) creates a PPO agent options object using
the specified name-value pairs to override default property values.

Examples

Create PPO Agent Options Object

Create a PPO agent options object, specifying the experience horizon.

opt = rlPPOAgentOptions('ExperienceHorizon',256)

opt = 
  rlPPOAgentOptions with properties:

          ExperienceHorizon: 256
              MiniBatchSize: 128
                 ClipFactor: 0.2000
          EntropyLossWeight: 0.0100
                   NumEpoch: 3
    AdvantageEstimateMethod: "gae"
                  GAEFactor: 0.9500
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                 SampleTime: 1
             DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ExperienceHorizon',256

ExperienceHorizon — Number of steps the agent interacts with the
environment before learning
512 (default) | positive integer

Number of steps the agent interacts with the environment before learning from its
experience, specified as the comma-separated pair consisting of 'ExperienceHorizon'
and a positive integer.

The ExperienceHorizon value must be greater than or equal to the MiniBatchSize
value.

ClipFactor — Clip factor
0.2 (default) | positive scalar less than 1

Clip factor for limiting the change in each policy update step, specified as the comma-
separated pair consisting of 'ClipFactor' and a positive scalar less than 1.

EntropyLossWeight — Entropy loss weight
0.01 (default) | scalar value greater 0 and 1

Entropy loss weight, specified as the comma-separated pair consisting of
'EntropyLossWeight' and a scalar value between 0 and 1. A higher loss weight value
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promotes agent exploration by applying a penalty for being too certain about which action
to take. Doing so can help the agent move out of local optima.

For episode step t, the entropy loss function, which is added to the loss function for actor
updates, is:

Ht = E ∑
k = 1

M
μk St θμ lnμk St θμ

Here:

• E is the entropy loss weight.
• M is the number of possible actions.
• μk(St|θμ) is the probability of taking action Ak when in state St following the current

policy.

MiniBatchSize — Mini-batch size
128 (default) | positive integer

Mini-batch size used for each learning epoch, specified as the comma-separated pair
consisting of 'MiniBatchSize' and a positive integer.

The MiniBatchSize value must be less than or equal to the ExperienceHorizon value.

NumEpoch — Number of epochs
3 (default) | positive integer

Number of epochs for which the actor and critic networks learn from the current
experience set, specified as the comma-separated pair consisting of 'NumEpoch' and a
positive integer.

AdvantageEstimateMethod — Method for estimating advantage values
"gae" (default) | "finite-horizon"

Method for estimating advantage values, specified as the comma-separated pair
consisting of 'AdvantageEstimateMethod' and one of the following:

• "gae" — Generalized advantage estimator
• "finite-horizon" — Finite horizon estimation

For more information on these methods, see the training algorithm information in
“Proximal Policy Optimization Agents”.
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GAEFactor — Smoothing factor for generalized advantage estimator
0.95 (default) | scalar value between 0 and 1

Smoothing factor for generalized advantage estimator, specified as the comma-separated
pair consisting of 'GAEFactor' and a scalar value between 0 and 1, inclusive. This
option applies only when the AdvantageEstimateMethod option is "gae"

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive scalar less than or equal
to 1.

Output Arguments
opt — PPO agent options
rlPPOAgentOptions object

PPO agent options, returned as an rlPPOAgentOptions object. The object properties
are described in “Name-Value Pair Arguments” on page 1-47.

See Also
Functions
rlPPOAgent

Topics
“Proximal Policy Optimization Agents”

Introduced in R2019b
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rlPredefinedEnv
Create a predefined reinforcement learning environment

Syntax
env = rlPredefinedEnv(keyword)

Description
env = rlPredefinedEnv(keyword) takes a predefined keyword keyword
representing the environment name to create a MATLAB or Simulink reinforcement
learning environment env. The environment env models the dynamics with which the
agent interacts, generating rewards and observations in response to agent actions.

Examples

Basic Grid World Reinforcement Learning Environment

Use the predefined 'BasicGridWorld' keyword to create a basic grid world
reinforcement learning environment.

env = rlPredefinedEnv('BasicGridWorld')

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []
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Continuous Double Integrator Reinforcement Learning Environment

Use the predefined 'DoubleIntegrator-Continuous' keyword to create a continuous
double integrator reinforcement learning environment.

env = rlPredefinedEnv('DoubleIntegrator-Continuous')

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

You can visualize the environment using the plot function and interact with it using the
reset and step functions.

plot(env)
observation = reset(env)

observation = 2×1

     4
     0

[observation,reward,isDone] = step(env,16)
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observation = 2×1

    4.0800
    1.6000

reward = -16.5559

isDone = logical
   0

Continuous Simple Pendulum Model Reinforcement Learning Environment

Use the predefined 'SimplePendulumModel-Continuous' keyword to create a
continuous simple pendulum model reinforcement learning environment.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'
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Input Arguments
keyword — Predefined keyword representing the environment name
'BasicGridWorld' | 'CartPole-Discrete' | 'CartPole-Continuous' |
'DoubleIntegrator-Discrete' | 'DoubleIntegrator-Continuous' |
'SimplePendulumWithImage-Discrete' | 'SimplePendulumWithImage-
Continuous' | 'WaterFallGridWorld-Deterministic' | 'WaterFallGridWorld-
Stochastic' | 'SimplePendulumModel-Discrete' | 'SimplePendulumModel-
Continuous' | 'CartPoleSimscapeModel-Discrete' |
'CartPoleSimscapeModel-Continuous'

Predefined keyword representing the environment name, specified as one of the
following:

MATLAB Environment

• 'BasicGridWorld'
• 'CartPole-Discrete'
• 'CartPole-Continuous'
• 'DoubleIntegrator-Discrete'
• 'DoubleIntegrator-Continuous'
• 'SimplePendulumWithImage-Discrete'
• 'SimplePendulumWithImage-Continuous'
• 'WaterFallGridWorld-Stochastic'
• 'WaterFallGridWorld-Deterministic'

Simulink Environment

• 'SimplePendulumModel-Discrete'
• 'SimplePendulumModel-Continuous'
• 'CartPoleSimscapeModel-Discrete'
• 'CartPoleSimscapeModel-Continuous'
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Output Arguments
env — MATLAB or Simulink environment object
rlMDPEnv object | CartPoleDiscreteAction object | CartPoleContinuousAction
object | DoubleIntegratorDiscreteAction object |
DoubleIntegratorContinuousAction object |
SimplePendlumWithImageDiscreteAction object |
SimplePendlumWithImageContinuousAction object | SimulinkEnvWithAgent
object

MATLAB or Simulink environment object, returned as one of the following:

• rlMDPEnv object, when you use one of the following keywords:

• 'BasicGridWorld'
• 'WaterFallGridWorld-Stochastic'
• 'WaterFallGridWorld-Deterministic'

• CartPoleDiscreteAction object, when you use the 'CartPole-Discrete'
keyword.

• CartPoleContinuousAction object, when you use the 'CartPole-Continuous'
keyword.

• DoubleIntegratorDiscreteAction object, when you use the
'DoubleIntegrator-Discrete' keyword.

• DoubleIntegratorContinuousAction object, when you use the
'DoubleIntegrator-Continuous' keyword.

• SimplePendlumWithImageDiscreteAction object, when you use the
'SimplePendulumWithImage-Discrete' keyword.

• SimplePendlumWithImageContinuousAction object, when you use the
'SimplePendulumWithImage-Continuous' keyword.

• SimulinkEnvWithAgent object, when you use one of the following keywords:

• 'SimplePendulumModel-Discrete'
• 'SimplePendulumModel-Continuous'
• 'CartPoleSimscapeModel-Discrete'
• 'CartPoleSimscapeModel-Continuous'
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See Also

Topics
“Create MATLAB Environments for Reinforcement Learning”
“Create Simulink Environments for Reinforcement Learning”
“Load Predefined Control System Environments”
“Load Predefined Simulink Environments”

Introduced in R2019a
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rlQAgent
Create Q-learning reinforcement learning agent

Syntax
agent = rlQAgent(critic)
agent = rlQAgent(critic,opt)

Description
agent = rlQAgent(critic) creates a Q-learning agent with default options and the
specified critic representation. For more information on Q-learning agents, see “Q-
Learning Agents”.

agent = rlQAgent(critic,opt) creates a Q-learning agent using the specified agent
options to override the agent defaults.

Examples

Create a Q-Learning Agent

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic value function representation using a Q table derived from the
environment observation and action specifications.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
critic = rlRepresentation(qTable);

Create a Q-learning agent using the specified critic value function and an epsilon value of
0.05.
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opt = rlQAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;
agent = rlQAgent(critic,opt);

Input Arguments
critic — Critic network representation
rlTableRepresentation object

Critic network representation, specified as an rlTableRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlQAgentOptions object

Agent options, specified as an rlQAgentOptions object.

Output Arguments
agent — Q-learning agent
rlQAgent object

Q-learning agent, returned as an rlQAgent object.

See Also
Functions
rlQAgentOptions | train

Topics
“Q-Learning Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlQAgentOptions
Create options for Q-learning agent

Syntax
opt = rlQAgentOptions
opt = rlQAgentOptions(Name,Value)

Description
opt = rlQAgentOptions creates an rlQAgentOptions object for use as an argument
when creating a Q-learning agent using all default settings. You can modify the object
properties using dot notation.

opt = rlQAgentOptions(Name,Value) creates an options object using the specified
name-value pairs to override default property values.

Examples

Create Q-Learning Agent Options Object

Create an rlQAgentOptions object that specifies the agent sample time.

opt = rlQAgentOptions('SampleTime',0.5)

opt = 

  rlQAgentOptions with properties:

    EpsilonGreedyExploration: [1×1 rl.option.EpsilonGreedyExploration]
                  SampleTime: 0.5000
              DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to
0.95.
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opt.DiscountFactor = 0.95;

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DiscountFactor',0.95

EpsilonGreedyExploration — Options for epsilon greedy exploration
EpsilonGreedyExploration object

Options for epsilon greedy exploration, specified as the comma-separated pair consisting
of 'EpsilonGreedyExploration' and an EpsilonGreedyExploration object with
the following numeric value properties.

Property Description
Epsilon Probability threshold to either randomly

select an action or select the action that
maximizes the state-action value function. A
larger value of Epsilon means that the
agent randomly explores the action space
at a higher rate.

EpsilonMin Minimum value of Epsilon
EpsilonDecay Decay rate

Epsilon is updated using the following formula when it is greater than EpsilonMin:

Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the rlQAgentOptions
object. For example, set the probability threshold to 0.9.
opt = rlQAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;
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SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor applied to rewards
numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.

Output Arguments
opt — Q-learning agent options
rlQAgentOptions object

Q-learning agent options, returned as an rlQAgentOptions object. The object
properties are described in “Name-Value Pair Arguments” on page 1-91.

See Also
rlQAgent

Topics
“Q-Learning Agents”

Introduced in R2019a
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rlRepresentation
Model representation for reinforcement learning agents

Syntax
rep = rlRepresentation(net,obsInfo,'Observation',obsNames)
rep = rlRepresentation(net,obsInfo,actInfo,'Observation',
obsNames,'Action',actNames)

tableCritic = rlRepresentation(tab)

critic = rlRepresentation(basisFcn,W0,obsInfo)
critic = rlRepresentation(basisFcn,W0,oaInfo)
actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo)

rep = rlRepresentation( ___ ,repOpts)

Description
Use rlRepresentation to create a function approximator representation for the actor
or critic of a reinforcement learning agent. To do so, you specify the observation and
action signals for the training environment and options that affect the training of an agent
that uses the representation. For more information on creating representations, see
“Create Policy and Value Function Representations”.

rep = rlRepresentation(net,obsInfo,'Observation',obsNames) creates a
representation for the deep neural network net. The observation names obsNames are
the network input layer names. obsInfo contains the corresponding observation
specifications for the training environment. Use this syntax to create a representation for
a critic that does not require action inputs, such as a critic for an rlACAgent or
rlPGAgent agent.

rep = rlRepresentation(net,obsInfo,actInfo,'Observation',
obsNames,'Action',actNames) creates a representation with action signals specified
by the names actNames and specification actInfo. Use this syntax to create a
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representation for any actor, or for a critic that takes both observation and action as
input, such as a critic for an rlDQNAgent or rlDDPGAgent agent.

tableCritic = rlRepresentation(tab) creates a critic representation for the value
table or Q table tab. When you create a table representation, you specify the observation
and action specifications when you create tab.

critic = rlRepresentation(basisFcn,W0,obsInfo) creates a linear basis
function representation using the handle to a custom basis function basisFcn and initial
weight vector W0. obsInfo contains the corresponding observation specifications for the
training environment. Use this syntax to create a representation for a critic that does not
require action inputs, such as a critic for an rlACAgent or rlPGAgent agent.

critic = rlRepresentation(basisFcn,W0,oaInfo) creates a linear basis function
representation using the specification cell array oaInfo, where oaInfo =
{obsInfo,actInfo}. Use this syntax to create a representation for a critic that takes
both observations and actions as inputs, such as a critic for an rlDQNAgent or
rlDDPGAgent agent.

actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo) creates a linear
basis function representation using the specified observation and action specifications,
obsInfo and actInfo, respectively. Use this syntax to create a representation for an
actor that takes observations as inputs and generates actions.

rep = rlRepresentation( ___ ,repOpts) creates a representation using additional
options that specify learning parameters for the representation when you train an agent.
Available options include the optimizer used for training and the learning rate. Use
rlRepresentationOptions to create the options set repOpts. You can use this syntax
with any of the previous input-argument combinations.

Examples

Create Actor and Critic Representations

Create an actor representation and a critic representation that you can use to define a
reinforcement learning agent such as an Actor Critic (AC) agent.

For this example, create actor and critic representations for an agent that can be trained
against the cart-pole environment described in “Train AC Agent to Balance Cart-Pole
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System”. First, create the environment. Then, extract the observation and action
specifications from the environment. You need these specifications to define the agent and
critic representations.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For a state-value-function critic such as those used for AC or PG agents, the inputs are the
observations and the output should be a scalar value, the state value. For this example,
create the critic representation using a deep neural network with one output, and with
observation signals corresponding to x,xdot,theta,thetadot as described in “Train
AC Agent to Balance Cart-Pole System”. You can obtain the number of observations from
the obsInfo specification. Name the network layer input 'observation'.

numObservation = obsInfo.Dimension(1);
criticNetwork = [
    imageInputLayer([numObservation 1 1],'Normalization','none','Name','observation')
    fullyConnectedLayer(1,'Name','CriticFC')];

Specify options for the critic representation using rlRepresentationOptions. These
options control parameters of critic network learning, when you train an agent that
incorporates the critic representation. For this example, set the learning rate to 0.05 and
the gradient threshold to 1.

repOpts = rlRepresentationOptions('LearnRate',5e-2,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. Also,
specify the action and observation information for the critic. Set the observation name to
'observation', which is the name you used when you created the network input layer
for criticNetwork.

critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'observation'},repOpts)

critic = 
  rlLayerRepresentation with properties:

    Options: [1x1 rl.option.rlRepresentationOptions]

Similarly, create a network for the actor. An AC agent decides which action to take given
observations using an actor representation. For an actor, the inputs are the observations,
and the output depends on whether the action space is discrete or continuous. For the
actor of this example, there are two possible discrete actions, –10 or 10. Thus, to create
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the actor, use a deep neural network with the same observation input as the critic, that
can output these two values. You can obtain the number of actions from the actInfo
specification. Name the output 'action'.

numAction = numel(actInfo.Elements); 
actorNetwork = [
    imageInputLayer([4 1 1], 'Normalization','none','Name','observation')
    fullyConnectedLayer(numAction,'Name','action')];

Create the actor representation using the observation name and specification and the
action name and specification. Use the same representation options.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},repOpts)

actor = 
  rlLayerRepresentation with properties:

    Options: [1x1 rl.option.rlRepresentationOptions]

You can now use the actor and critic representations to create an AC agent.

agentOpts = rlACAgentOptions(...
    'NumStepsToLookAhead',32,...
    'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent = 
  rlACAgent with properties:

    AgentOptions: [1x1 rl.option.rlACAgentOptions]

For additional examples showing how to create actor and critic representations for
different agent types, see:

• “Train DDPG Agent to Control Double Integrator System”
• “Train DQN Agent to Balance Cart-Pole System”
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Create Q Table Representation

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a Q table using the action and observation specifications from the environment.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));

Create a representation for the Q table.

tableRep = rlRepresentation(qTable);

Create Linear Basis Function Critic Representation

Assume that you have an environment, env. Obtain the observation and action
specifications from the environment.

obsInfo = geObservationInfo(env);
actInfo = getActionInfo(env);

Create a custom basis function. In this case, use the quadratic basis function from “Train
Custom LQR Agent”.

function B = computeQuadraticBasis(x,u,n)
z = cat(1,x,u);
idx = 1;
for r = 1:n
    for c = r:n
        if idx == 1
            B = z(r)*z(c);
        else
            B = cat(1,B,z(r)*z(c));
        end
        idx = idx + 1;
    end
end

Compute any dimensions and parameters required for your basis function.

nQ = size(obj.Q,1);
nR = size(obj.R,1);
n = nQ+nR;
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Set an initial weight vector.

w0 = 0.1*ones(0.5*(n+1)*n,1);

Create a representation using a handle to the custom basis function.
critic = rlRepresentation(@(x,u) computeQuadraticBasis(x,u,n),w0,obsInfo,actInfo);

Input Arguments
net — Deep neural network for actor or critic
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork
object

Deep neural network for actor or critic, specified as one of the following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep
Learning Toolbox). For more information on creating deep neural networks for
reinforcement learning, see “Create Policy and Value Function Representations”.

obsNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors. The observation names
are the network input layer names you specify when you create net. The names in
obsNames must be in the same order as the observation specifications in obsInfo.
Example: {'observation'}

obsInfo — Observation specification
spec object | array of spec objects

Observation specification, specified as a reinforcement learning spec object or an array of
spec objects. You can extract obsInfo from an existing environment using
getObservationInfo. Or, you can construct the specs manually using a spec command
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such as rlFiniteSetSpec or rlNumericSpec. This specification defines such
information about the observations as the dimensions and names of the observation
signals.

actNames — Action name
single-element cell array that contains a character vector

Action name, specified as a single-element cell array that contains a character vector. The
action name is the network layer name you specify when you create net. For critic
networks, this layer is the first layer of the action input path. For actors, this layer is the
last layer of the action output path.
Example: {'action'}

actInfo — Action specification
spec object

Action specification, specified as a reinforcement learning spec object. You can extract
actInfo from an existing environment using getActionInfo. Or, you can construct the
spec manually using a spec command such as rlFiniteSetSpec or rlNumericSpec.
This specification defines such information about the action as the dimensions and name
of the action signal.

For linear basis function representations, the action signal must be a scalar, a column
vector, or a discrete action.

tab — Value table or Q table for critic
rlTable object

Value table or Q table for critic, specified as an rlTable object. The learnable
parameters of a table representation are the elements of tab.

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined function. For a
linear basis function representation, the output of the representation is f = W'B, where
W is a weight array and B is the column vector returned by the custom basis function. The
learnable parameters of a linear basis function representation are the elements of W.

When creating:
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• A critic representation with observation inputs only, your basis function must have the
following signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type
and dimensions as the observation specifications in obsInfo.

• A critic representation with observation and action inputs, your basis function must
have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN,act)

Here obs1 to obsN are observations in the same order and with the same data type
and dimensions as the observation specifications in the first element of oaInfo, and
act has the same data type and dimensions as the action specification in the second
element of oaInfo.

• An actor representation, your basis function must have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here, obs1 to obsN are observations in the same order and with the same data type
and dimensions as the observation specifications in obsInfo. The data types and
dimensions of the action specification in actInfo affect the data type and dimensions
of f.

Example: @(x,u) myBasisFunction(x,u)

W0 — Initial value for linear basis function weight vector
column vector | array

Initial value for linear basis function weight array, W, specified as one of the following:

• Column vector — When creating a critic representation or an actor representation
with a continuous scalar action signal

• Array — When creating an actor representation with a column vector continuous
action signal or a discrete action space.

oaInfo — Observation and action specifications
cell array

Observation and action specifications for creating linear basis function critic
representations, specified as the cell array {obsInfo,actInfo}.
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repOpts — Representation options
rlRepresentationOptions object

Representation options, specified as an option set that you create with
rlRepresentationOptions. Available options include the optimizer used for training
and the learning rate. See rlRepresentationOptions for details.

Output Arguments
rep — Deep neural network representation
rlLayerRepresentation object

Deep neural network representation, returned as an rlLayerRepresentation object.
Use this representation to create an agent for reinforcement learning. For more
information, see “Reinforcement Learning Agents”.

tableCritic — Value or Q table critic representation
rlTableRepresentation object

Value or Q table critic representation, returned as an rlTableRepresentation object.
Use this representation to create an agent for reinforcement learning. For more
information, see “Reinforcement Learning Agents”.

critic — Linear basis function critic representation
rlLinearBasisRepresentation object

Linear basis function critic representation, returned as and
rlLinearBasisRepresentation object. Use this representation to create an agent for
reinforcement learning. For more information, see “Reinforcement Learning Agents”.

actor — Linear basis function actor representation
rlLinearBasisRepresentation object

Linear basis function actor representation, returned as and
rlLinearBasisRepresentation object. Use this representation to create an agent for
reinforcement learning. For more information, see “Reinforcement Learning Agents”.
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See Also
Functions
getActionInfo | getObservationInfo | rlRepresentationOptions

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2019a
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rlRepresentationOptions
Create options for reinforcement learning agent representations

Syntax
repOpts = rlRepresentationOptions
repOpts = rlRepresentationOptions(Name,Value)

Description
repOpts = rlRepresentationOptions returns the default options for defining a
representation for a reinforcement learning agent.

repOpts = rlRepresentationOptions(Name,Value) option set using the specified
name-value pairs to override default option values.

Examples

Configure Options for Creating Representation

Create an options set for creating a critic or actor representation for a reinforcement
learning agent. Set the learning rate for the representation to 0.05, and set the gradient
threshold to 1. You can set the options using Name,Value pairs when you create the
options set. Any options that you do not explicitly set have their default values.

repOpts = rlRepresentationOptions('LearnRate',5e-2,...
                                  'GradientThreshold',1)

repOpts = 
  rlRepresentationOptions with properties:

                  LearnRate: 0.0500
          GradientThreshold: 1
    GradientThresholdMethod: "l2norm"
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     L2RegularizationFactor: 1.0000e-04
                  UseDevice: "cpu"
                  Optimizer: "adam"
        OptimizerParameters: [1x1 rl.option.OptimizerParameters]

Alternatively, create a default options set and use dot notation to change some of the
values.

repOpts = rlRepresentationOptions;
repOpts.LearnRate = 5e-2;
repOpts.GradientThreshold = 1

repOpts = 
  rlRepresentationOptions with properties:

                  LearnRate: 0.0500
          GradientThreshold: 1
    GradientThresholdMethod: "l2norm"
     L2RegularizationFactor: 1.0000e-04
                  UseDevice: "cpu"
                  Optimizer: "adam"
        OptimizerParameters: [1x1 rl.option.OptimizerParameters]

If you want to change the properties of the OptimizerParameters option, use dot
notation to access them.

repOpts.OptimizerParameters.Epsilon = 1e-7;
repOpts.OptimizerParameters

ans = 
  OptimizerParameters with properties:

                      Momentum: "Not applicable"
                       Epsilon: 1.0000e-07
           GradientDecayFactor: 0.9000
    SquaredGradientDecayFactor: 0.9990

1 Functions — Alphabetical List

1-104



Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Optimizer',"rmsprop"

LearnRate — Learning rate for the representation
0.01 (default) | positive scalar

Learning rate for the representation, specified as the comma-separated pair consisting of
'LearnRate' and a positive scalar. If the learning rate is too low, then training takes a
long time. If the learning rate is too high, then training might reach a suboptimal result or
diverge.
Example: 'LearnRate',0.025

Optimizer — Optimizer for representation
"adam" (default) | "sgdm" | "rmsprop"

Optimizer for training the network of the representation, specified as the comma-
separated pair consisting of 'Optimizer' and one of the following strings:

• "adam" — Use the Adam optimizer. You can specify the decay rates of the gradient
and squared gradient moving averages using the GradientDecayFactor and
SquaredGradientDecayFactor fields of the OptimizerParameters option.

• "sgdm" — Use the stochastic gradient descent with momentum (SGDM) optimizer. You
can specify the momentum value using the Momentum field of the
OptimizerParameters option.

• "rmsprop" — Use the RMSProp optimizer. You can specify the decay rate of the
squared gradient moving average using the SquaredGradientDecayFactor fields of
the OptimizerParameters option.

For more information about these optimizers, see “Stochastic Gradient Descent” (Deep
Learning Toolbox) in the Algorithms section of trainingOptions in Deep Learning
Toolbox.
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Example: 'Optimizer',"sgdm"

OptimizerParameters — Applicable parameters for optimizer
OptimizerParameters object

Applicable parameters for the optimizer, specified as the comma-separated pair consisting
of 'OptimizerParameters' and an OptimizerParameters object.

The OptimizerParameters object has the following properties.

  
Momentum Contribution of previous step, specified as a

scalar from 0 to 1. A value of 0 means no
contribution from the previous step. A value
of 1 means maximal contribution.

This parameter applies only when
Optimizer is "sgdm". In that case, the
default value is 0.9. This default value
works well for most problems.

Epsilon Denominator offset, specified as a positive
scalar. The optimizer adds this offset to the
denominator in the network parameter
updates to avoid division by zero.

This parameter applies only when
Optimizer is "adam" or rmsprop. In that
case, the default value is 10–8. This default
value works well for most problems.

GradientDecayFactor Decay rate of gradient moving average,
specified as a positive scalar from 0 to 1.

This parameter applies only when
Optimizer is "adam". In that case, the
default value is 0.9. This default value
works well for most problems.
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SquaredGradientDecayFactor Decay rate of squared gradient moving

average, specified as a positive scalar from
0 to 1.

This parameter applies only when
Optimizer is "adam" or "rmsprop". In
that case, the default value is 0.999. This
default value works well for most problems.

When a particular property of OptimizerParameters is not applicable to the optimizer
type specified in the Optimizer option, that property is set to "Not applicable".

To change the default values, create an rlRepresentationOptions set and use dot
notation to access and change the properties of OptimizerParameters.
repOpts = rlRepresentationOptions;
repOpts.OptimizerParameters.Epsilon = 1e-7;

GradientThreshold — Threshold value for gradient
Inf (default) | positive scalar

Threshold value for the representation gradient, specified as the comma-separated pair
consisting of 'GradientThreshold' and Inf or a positive scalar. If the gradient
exceeds this value, the gradient is clipped as specified by the
GradientThresholdOption. Clipping the gradient limits how much the network
parameters change in a training iteration.
Example: 'GradientThreshold',1

GradientThresholdMethod — Gradient threshold method
"l2norm" (default) | "global-l2norm" | "absolute-value"

Gradient threshold method used to clip gradient values that exceed the gradient
threshold, specified as the comma-separated pair consisting of
'GradientThresholdMethod' and one of the following strings:

• "l2norm" — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals
GradientThreshold.

• "global-l2norm" — If the global L2 norm, L, is larger than GradientThreshold,
then scale all gradients by a factor of GradientThreshold/L. The global L2 norm
considers all learnable parameters.
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• "absolute-value" — If the absolute value of an individual partial derivative in the
gradient of a learnable parameter is larger than GradientThreshold, then scale the
partial derivative to have magnitude equal to GradientThreshold and retain the
sign of the partial derivative.

For more information, see “Gradient Clipping” (Deep Learning Toolbox) in the Algorithms
section of trainingOptions in Deep Learning Toolbox.
Example: 'GradientThresholdMethod',"absolute-value"

L2RegularizationFactor — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as the comma-separated pair
consisting of 'L2RegularizationFactor' and a nonnegative scalar. For more
information, see “L2 Regularization” (Deep Learning Toolbox) in the Algorithms section of
trainingOptions in Deep Learning Toolbox.

To avoid overfitting when using a representation with many parameters, consider
increasing the L2RegularizationFactor option.
Example: 'L2RegularizationFactor',0.0005

UseDevice — Computation device for training
"cpu" (default) | "gpu"

Computation device for training an agent that uses the representation, specified as the
comma-separated pair consisting of 'UseDevice' and either "cpu" or "gpu".

The "gpu" option requires Parallel Computing Toolbox™. To use a GPU for training a
network, you must also have a CUDA® enabled NVIDIA® GPU with compute capability 3.0
or higher.
Example: 'UseDevice',"gpu"

Output Arguments
repOpts — Representation options
rlRepresentationOptions object

Option set for defining a representation for a reinforcement learning agent., returned as
an rlRepresentationgOptions object. The property values of repOpts are initialized
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to the default values or to the values you specify with Name,Value pairs. You can further
modify the property values using dot notation. Use the options set as an input argument
with rlRepresentation when you create reinforcement learning representations.

See Also
Functions
rlRepresentation

Introduced in R2019a
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rlSARSAAgent
Create SARSA reinforcement learning agent

Syntax
agent = rlSARSAAgent(critic)
agent = rlQAgent(critic,opt)

Description
agent = rlSARSAAgent(critic) creates a SARSA agent with default options and the
specified critic representation. For more information on SARSA agents, see “SARSA
Agents”.

agent = rlQAgent(critic,opt) creates a SARSA agent using the specified agent
options to override the agent defaults.

Examples

Create a SARSA Agent

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic value function representation using a Q table derived from the
environment observation and action specifications.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
critic = rlRepresentation(qTable);

Create a SARSA agent using the specified critic value function and an epsilon value of
0.05.
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opt = rlSARSAAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;
agent = rlSARSAAgent(critic,opt);

Input Arguments
critic — Critic network representation
rlTableRepresentation object

Critic network representation, specified as an rlTableRepresentation object created
using rlRepresentation. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

opt — Agent options
rlSARSAAgentOptions object

Agent options, specified as an rlSARSAAgentOptions object.

Output Arguments
agent — SARSA agent
rlSARSAAgent object

SARSA agent, returned as an rlSARSAAgent object.

See Also
rlSARSAAgentOptions | train

Topics
“SARSA Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlSARSAAgentOptions
Create options for SARSA agent

Syntax
opt = rlSARSAAgentOptions
opt = rlSARSAAgentOptions(Name,Value)

Description
opt = rlSARSAAgentOptions creates an rlSARSAAgentOptions object for use as an
argument when creating a SARSA agent using all default settings. You can modify the
object properties using dot notation.

opt = rlSARSAAgentOptions(Name,Value) creates an options object using the
specified name-value pairs to override default property values.

Examples

Create SARSA Agent Options Object

Create an rlSARSAAgentOptions object that specifies the agent sample time.

opt = rlSARSAAgentOptions('SampleTime',0.5)

opt = 

  rlSARSAAgentOptions with properties:

    EpsilonGreedyExploration: [1×1 rl.option.EpsilonGreedyExploration]
                  SampleTime: 0.5000
              DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to
0.95.
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opt.DiscountFactor = 0.95;

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DiscountFactor',0.95

EpsilonGreedyExploration — Options for epsilon greedy exploration
EpsilonGreedyExploration object

Options for epsilon greedy exploration, specified as the comma-separated pair consisting
of 'EpsilonGreedyExploration' and an EpsilonGreedyExploration object with
the following numeric value properties.

Property Description
Epsilon Probability threshold to either randomly

select an action or select the action that
maximizes the state-action value function. A
larger value of Epsilon means that the
agent randomly explores the action space
at a higher rate.

EpsilonMin Minimum value of Epsilon
EpsilonDecay Decay rate

Epsilon is updated using the following formula when it is greater than EpsilonMin:

Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the
rlSARSAAgentOptions object. For example, set the probability threshold to 0.9.
opt = rlSARSAAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;
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SampleTime — Sample time of agent
1 (default) | numeric value

Sample time of agent, specified as the comma-separated pair consisting of
'SampleTime' and a numeric value.

DiscountFactor — Discount factor applied to rewards
numeric value

Discount factor applied to future rewards during training, specified as the comma-
separated pair consisting of 'DiscountFactor' and a positive numeric value less than
or equal to 1.

Output Arguments
opt — SARSA agent options
rlSARSAAgentOptions object

SARSA agent options, returned as an rlSARSAAgentOptions object. The object
properties are described in “Name-Value Pair Arguments” on page 1-113.

See Also
rlSARSAAgent

Topics
“SARSA Agents”

Introduced in R2019a
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rlSimulationOptions
Options for simulating reinforcement learning environments

Syntax
simOpts = rlSimulationOptions
simOpts = rlSimulationOptions(Name,Value)

Description
simOpts = rlSimulationOptions returns the default options for simulating a
reinforcement learning environment against an agent. You use simulation options to
specify parameters about the simulation such as the maximum number of steps to run per
simulation and the number of simulations to run. After you configure the options, use
simOpts as an input argument for sim.

simOpts = rlSimulationOptions(Name,Value) creates an option set for simulation
using the specified name-value pairs to override default option values.

Examples

Configure Options for Simulation

Create an options set for simulating a reinforcement learning environment. Set the
number of steps to simulate to 1000, and configure the options to run three simulations.

You can set the options using Name,Value pairs when you create the options set. Any
options that you do not explicitly set have their default values.

simOpts = rlSimulationOptions(...
    'MaxSteps',1000,...
    'NumSimulations',3)

simOpts = 
  rlSimulationOptions with properties:
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                  MaxSteps: 1000
            NumSimulations: 3
               StopOnError: "on"
               UseParallel: 0
    ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

Alternatively, create a default options set and use dot notation to change some of the
values.

simOpts = rlSimulationOptions;
simOpts.MaxSteps = 1000;
simOpts.NumSimulations = 3;

simOpts

simOpts = 
  rlSimulationOptions with properties:

                  MaxSteps: 1000
            NumSimulations: 3
               StopOnError: "on"
               UseParallel: 0
    ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxSteps',1000,'StopOnError',"On"

MaxSteps — Number of steps to run the simulation
500 (default) | positive integer
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Number of steps to run the simulation, specified as the comma-separated pair consisting
of 'MaxSteps' and a positive integer. In general, you define episode termination
conditions in the environment. This value is the maximum number of steps to run in the
simulation if those termination conditions are not met.
Example: 'MaxSteps',1000

NumSimulations — Number of simulations
1 (default) | positive integer

Number of simulations to run, specified as the comma-separated pair consisting of
'NumSimulations' and a positive integer. At the start of each simulation, sim resets the
environment. You specify what happens on environment reset when you create the
environment. For instance, resetting the environment at the start of each episode can
include randomizing initial state values, if you configure your environment to do so. In
that case, running multiple simulations allows you to validate performance of a trained
agent over a range of initial conditions.
Example: 'NumSimulations',10

StopOnError — Stop simulation when error occurs
"on" (default) | "off"

Stop simulation when an error occurs, specified as "off" or "on". When this option is
"off", errors are captured and returned in the SimulationInfo output of sim, and
simulation continues.

UseParallel — Flag for using parallel simulation
false (default) | true

Flag for using parallel simulation, specified as the comma-separated pair consisting of
'UseParallel' and either true or false. Setting this option to true configures
simulation to use parallel computing. To specify options for parallel simulation, use the
ParallelizationOptions property.

Using parallel computing requires Parallel Computing Toolbox software.

For more information about training using parallel computing, see “Train Reinforcement
Learning Agents”.
Example: 'UseParallel',true

ParallelizationOptions — Options to control parallel simulation
ParallelTraining object
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Parallelization options to control parallel simulation, specified as the comma-separated
pair consisting of 'ParallelizationOptions' and a ParallelTraining object. For
more information about training using parallel computing, see “Train Reinforcement
Learning Agents”.

The ParallelTraining object has the following properties, which you can modify using
dot notation after creating the rlTrainingOptions object.

WorkerRandomSeeds — Randomizer initialization for workers
–1 (default) | –2 | vector

Randomizer initialization for workers, specified as one the following:

• –1 — Assign a unique random seed to each worker. The value of the seed is the worker
ID.

• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each work. The number of elements in

the vector must match the number of workers.

TransferBaseWorkspaceVariables — Send model and workspace variables to
parallel workers
"on" (default) | "off"

Send model and workspace variables to parallel workers, specified as "on" or "off".
When the option is "on", the host sends variables used in models and defined in the base
MATLAB workspace to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[] (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.

SetupFcn — Function to run before simulation starts
[] (default) | function handle

Function to run before simulation starts, specified as a handle to a function having no
input arguments. This function is run once per worker before simulation begins. Write
this function to perform any processing that you need prior to simulation.

CleanupFcn — Function to run after simulation ends
[] (default) | function handle
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Function to run after simulation ends, specified as a handle to a function having no input
arguments. You can write this function to clean up the workspace or perform other
processing after simulation terminates.

Output Arguments
simOpts — Option set for simulating reinforcement learning environments
rlSimulationOptions object

Option set for simulating reinforcement learning environments, returned as a
rlSimulationOptions object. The property values of simOpts are initialized to the
default values or to the values you specify with Name,Value pairs. You can further modify
the property values using dot notation. Use the options set as an input argument with sim
when you simulate reinforcement learning environment against an agent.

See Also
sim

Introduced in R2019a
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rlSimulinkEnv
Create a reinforcement learning environment using a dynamic model implemented in
Simulink

Syntax
env = rlSimulinkEnv(mdl,agentBlock,obsInfo,actInfo)
env = rlSimulinkEnv( ___ ,'UseFastRestart',fastRestartToggle)

Description
env = rlSimulinkEnv(mdl,agentBlock,obsInfo,actInfo) creates a
reinforcement learning environment object env using the Simulink model name mdl, the
path to the agent block agentBlock, observation information obsInfo, and action
information actInfo.

env = rlSimulinkEnv( ___ ,'UseFastRestart',fastRestartToggle) creates a
reinforcement learning environment object env with additional option to enable fast
restart.

Examples

Reinforcement Learning Environment for Simulink models

For this example, consider the rlSimplePendulumModel Simulink model. The model is
a simple frictionless pendulum that is initially hanging in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Assign the agent block path information, and create rlNumericSpec and
rlFiniteSetSpec objects for the observation and action information. You can use dot
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notation to assign property values of the rlNumericSpec and rlFiniteSetSpec
objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = rlNumericSpec([3 1])

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([2 1])

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [2x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfo.Name = 'observations';
actInfo.Name = 'torque';

Create the reinforcement learning environment for the Simulink model using information
extracted in the previous steps.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'
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You can also include a reset function using dot notation. For this example, consider
randomly initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
    UseFastRestart: 'on'

Input Arguments
mdl — Simulink model name
string | character vector

Simulink model name, specified as a string or character vector.

agentBlock — Agent block path
string | character vector

Agent block path, specified as a string or character vector. The specified agent block can
be inside of a model reference.

For more information on configuring an agent block for reinforcement learning, see RL
Agent.

obsInfo — Observation information
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Observation information, specified as an array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

For more information, see getObservationInfo.
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actInfo — Action information
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Action information, specified as an array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

For more information, see getActionInfo.

fastRestartToggle — Option to toggle fast restart
'on' (default) | 'off'

Option to toggle fast restart, specified as either 'on' or 'off'. Fast restart allows you to
perform iterative simulations without compiling a model or terminating the simulation
each time.

For more information on fast restart, see “How Fast Restart Improves Iterative
Simulations” (Simulink).

Output Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment, returned as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink
Environments for Reinforcement Learning”.

See Also
RL Agent | getActionInfo | getObservationInfo | rlFiniteSetSpec |
rlNumericSpec

Topics
“Train DDPG Agent to Control Double Integrator System”
“Train DDPG Agent to Swing Up and Balance Pendulum”
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“Train DDPG Agent to Swing Up and Balance Cart-Pole System”
“Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”
“Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation”
“Train DDPG Agent for Adaptive Cruise Control”
“How Fast Restart Improves Iterative Simulations” (Simulink)

Introduced in R2019a
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rlTrainingOptions
Options for training reinforcement learning agents

Syntax
trainOpts = rlTrainingOptions
trainOpts = rlTrainingOptions(Name,Value)

Description
trainOpts = rlTrainingOptions returns the default options for training a
reinforcement learning agent. You use training options to specify parameters about the
training session such as the maximum number of episodes to train, criteria for stopping
training, criteria for saving agents, and how to use parallel computing. After you
configure the options, use trainOpts as an input argument for train.

trainOpts = rlTrainingOptions(Name,Value) creates an option set for training
using the specified name-value pairs to override default option values.

Examples

Configure Options for Training

Create an options set for training a reinforcement learning agent. Set the maximum
number of episodes and the maximum steps per episode to 1000. Configure the options to
stop training when the average reward equals or exceeds 480, and turn on both the
command-line display and the Reinforcement Learning Episode Manager for displaying
training results. You can set the options using Name,Value pairs when you create the
options set. Any options that you do not explicitly set have their default values.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',1000,...
    'StopTrainingCriteria',"AverageReward",...
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    'StopTrainingValue',480,...
    'Verbose',true,...
    'Plots',"training-progress")

trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: 5
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: 480
             SaveAgentCriteria: "none"
                SaveAgentValue: "none"
                   UseParallel: 0
        ParallelizationOptions: [1×1 rl.option.ParallelTraining]
            SaveAgentDirectory: "savedAgents"
                   StopOnError: "on"
                       Verbose: 1
                         Plots: "training-progress"

Alternatively, create a default options set and use dot notation to change some of the
values.

trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 1000;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 480;
trainOpts.Verbose = true;
trainOpts.Plots = "training-progress";

trainOpts

trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: 5
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: 480
             SaveAgentCriteria: "none"
                SaveAgentValue: "none"
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                   UseParallel: 0
        ParallelizationOptions: [1×1 rl.option.ParallelTraining]
            SaveAgentDirectory: "savedAgents"
                   StopOnError: "on"
                       Verbose: 1
                         Plots: "training-progress"

You can now use trainOpts as an input argument to the train command.

Configure Parallel Computing Options for Training

To turn on parallel computing for training a reinforcement learning agent, set the
UseParallel training option to true.

trainOpts = rlTrainingOptions('UseParallel',true);

To configure your parallel training, configure the fields of the
trainOpts.ParallelizationOptions. For example, specify the following training
options:

• Asynchronous mode
• Workers send data to the host every 100 steps within a training episode
• Workers compute and send gradients to the host

trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 100;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "Gradients";
trainOpts.ParallelizationOptions

ans = 
  ParallelTraining with properties:

                              Mode: "async"
             DataToSendFromWorkers: "Gradients"
              StepsUntilDataIsSent: 100
                 WorkerRandomSeeds: -1
    TransferBaseWorkspaceVariables: "on"
                     AttachedFiles: []
                          SetupFcn: []
                        CleanupFcn: []
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You can now use trainOpts as an input argument to the train command to perform
training with parallel computing.

Configure Options for A3C Training

To train an agent using the asynchronous advantage actor-critic (A3C) method, you must
set the agent and parallel training options appropriately.

When creating the AC agent, set the NumStepsToLookAhead value to be greater than 1.
Common values are 64 and 128.

agentOpts = rlACAgentOptions('NumStepsToLookAhead',64);

Use agentOpts when creating your agent.

Configure the training algorithm to use asynchronous parallel training.

trainOpts = rlTrainingOptions('UseParallel',true);
trainOpts.ParallelizationOptions.Mode = "async";

Configure the workers to return gradient data to the host. Also, set the number of steps
before the workers send data back to the host to match the number of steps to look
ahead.

trainOpts.ParallelizationOptions.DataToSendFromWorkers = "gradients";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = agentOpts.NumStepsToLookAhead;

Use trainOpts when training your agent.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example:
'StopTrainingCriteria',"AverageReward",'StopTrainingValue',100

MaxEpisodes — Maximum number of episodes to train the agent
500 (default) | positive integer

Maximum number of episodes to train the agent, specified as the comma-separated pair
consisting of 'MaxEpisodes' and a positive integer. Regardless of other criteria for
termination, training terminates after this many episodes.
Example: 'MaxEpisodes',1000

MaxStepsPerEpisode — Maximum number of steps to run per episode
500 (default) | positive integer

Maximum number of steps to run per episode, specified as the comma-separated pair
consisting of 'MaxStepsPerEpisode' and a positive integer. In general, you define
episode termination conditions in the environment. This value is the maximum number of
steps to run in the episode if those termination conditions are not met.
Example: 'MaxStepsPerEpisode',1000

ScoreAveragingWindowLength — Window length for averaging
5 (default) | positive integer

Window length for averaging scores, rewards, and numbers of steps, specified as the
comma-separated pair consisting of 'ScoreAveragingWindowLength' and a positive
integer. For options expressed in terms of averages, this is the number of episodes
included in the average. For instance suppose that StopTrainingCriteria is
"AverageReward", and StopTrainingValue is 500. Training terminates when the
reward averaged over the number of episodes specified by this parameter is 500 or
greater.
Example: 'ScoreAveragingWindowLength',10

StopTrainingCriteria — Training termination condition
"AverageSteps" (default) | "AverageReward" | "EpisodeCount" | ...

Training termination condition, specified as the comma-separated pair consisting of
'StopTrainingCriteria' and one of the following strings:

• "AverageSteps" — Stop training when the running average number of steps per
episode equals or exceeds the critical value specified by the option
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StopTrainingValue. The average is computed using the window
'ScoreAveragingWindowLength'.

• "AverageReward" — Stop training when the running average reward equals or
exceeds the critical value.

• "EpisodeReward" — Stop training when the reward in the current episode equals or
exceeds the critical value.

• "GlobalStepCount" — Stop training when the total number of steps in all episodes
(the total number of times the agent is invoked) equals or exceeds the critical value.

• "EpisodeCount" — Stop training when the number of training episodes equals or
exceeds the critical value.

Example: 'StopTrainingCriteria',"AverageReward"

StopTrainingValue — Critical value of training termination condition
500 (default) | scalar

Critical value of training termination condition, specified as the comma-separated pair
consisting of 'StopTrainingValue' and a scalar. Training terminates when the
termination condition specified by the StopTrainingCriteria option equals or exceeds
this value. For instance, if StopTrainingCriteria is "AverageReward", and
StopTrainingValue is 100, then training terminates when the average reward over the
number of episodes specified in 'ScoreAveragingWindowLength' equals or exceeds
100.
Example: 'StopTrainingValue',100

SaveAgentCriteria — Condition for saving agent during training
"none" (default) | "EpisodeReward" | "AverageReward" | "EpisodeCount" | ...

Condition for saving agent during training, specified as the comma-separated pair
consisting of 'SaveAgentCriteria' and one of the following strings:

• "none" — Do not save any agents during training.
• "EpisodeReward" — Save agent when the reward in the current episode equals or

exceeds the critical value.
• "AverageSteps" — Save agent when the running average number of steps per

episode equals or exceeds the critical value specified by the option
StopTrainingValue. The average is computed using the window
'ScoreAveragingWindowLength'.
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• "AverageReward" — Save agent when the running average reward over all episodes
equals or exceeds the critical value.

• "GlobalStepCount" — Save agent when the total number of steps in all episodes
(the total number of times the agent is invoked) equals or exceeds the critical value.

• "EpisodeCount" — Save agent when the number of training episodes equals or
exceeds the critical value.

Set this option to store candidate agents that perform well according to the criteria you
specify. When you set this option to a value other than "none", the software sets the
SaveAgentValue option to 500. You can change that value to specify the condition for
saving the agent.

For instance, suppose you want to store for further testing any agent that yields an
episode reward that equals or exceeds 100. To do so, set SaveAgentCriteria to
"EpisodeReward" and set the SaveAgentValue option to 100. When an episode
reward equals or exceeds 100, train saves the corresponding agent in a MAT-file in the
folder specified by the SaveAgentDirectory option. The MAT-file is called AgentK.mat
where K is the number of the corresponding episode. The agent is stored within that MAT-
file as saved_agent.
Example: 'SaveAgentCriteria',"EpisodeReward"

SaveAgentValue — Critical value of condition for saving agent
"none" (default) | 500 | scalar

Critical value of condition for saving agent, specified as the comma-separated pair
consisting of 'SaveAgentValue' and "none" or a numeric scalar.

When you specify a condition for saving candidate agents using SaveAgentCriteria,
the software sets this value to 500. Change the value to specify the condition for saving
the agent. See the SaveAgentValue option for more details.
Example: 'SaveAgentValue',100

SaveAgentDirectory — Folder for saved agents
"savedAgents" (default) | string | character vector

Folder for saved agents, specified as the comma-separated pair consisting of
'SaveAgentDirectory' and a string or character vector. The folder name can contain a
full or relative path. When an episode occurs that satisfies the condition specified by the
SaveAgentCriteria and SaveAgentValue options, the software saves the agent in a
MAT-file in this folder. If the folder doesn't exist, train creates it. When
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SaveAgentCriteria is "none", this option is ignored and train does not create a
folder.
Example: 'SaveAgentDirectory', pwd + "run1\Agents"

UseParallel — Flag for using parallel training
false (default) | true

Flag for using parallel training, specified as the comma-separated pair consisting of
'UseParallel' and either true or false. Setting this option to true configures
training to use parallel computing. To specify options for parallel training, use the
ParallelizationOptions property.

Using parallel computing requires Parallel Computing Toolbox software.

For more information about training using parallel computing, see “Train Reinforcement
Learning Agents”.
Example: 'UseParallel',true

ParallelizationOptions — Options to control parallel training
ParallelTraining object

Parallelization options to control parallel training, specified as the comma-separated pair
consisting of 'ParallelizationOptions' and a ParallelTraining object. For more
information about training using parallel computing, see “Train Reinforcement Learning
Agents”.

The ParallelTraining object has the following properties, which you can modify using
dot notation after creating the rlTrainingOptions object.

Mode — Parallel computing mode
"sync" (default) | "async"

Parallel computing mode, specified as one of the following:

• "sync" — Use parpool to run synchronous training on the available workers. In this
case, workers pause execution until all workers are finished. The host updates the
actor and critic parameters based on the results from all the workers and sends the
updated parameters to all workers.

• "async" — Use parpool to run asynchronous training on the available workers. In
this case, workers send their data back to the host as soon as they finish and receive
updated parameters from the host. The workers then continue with their task.
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DataToSendFromWorkers — Type of data that workers send to the host
"experiences" (default) | "gradients"

Type of data that workers send to the host, specified as one of the following strings:

• "experiences" — Send experience data (observation, action, reward, next
observation, is done) to the host. For agents with gradients, the host computes
gradients from the experiences.

• "gradients" — Compute and send gradients to the host. The host applies gradients
to update networks parameters.

Note AC and PG agents accept only DataToSendFromWorkers = "gradients". DQN
and DDPG agents accept only DataToSendFromWorkers = "experiences".

StepsUntilDataIsSent — When workers send data to host
–1 (default) | positive integer

When workers send data to host and receive updated parameters, specified as –1 or a
positive integer. This number indicates how many steps to compute during the episode
before sending data to the host. When this option is –1, the worker waits until the end of
the episode and then sends all step data to the host. Otherwise, the worker waits the
specified number of steps before sending data.

Note

• AC agents do not accept StepUntilDataIsSent = -1. For A3C training, set
StepUntilDataIsSent equal to the NumStepToLookAhead AC agent option.

• PG agents accept only StepUntilDataIsSent = -1.

WorkerRandomSeeds — Randomizer initialization for workers
–1 (default) | –2 | vector

Randomizer initialization for workers, specified as one the following:

• –1 — Assign a unique random seed to each worker. The value of the seed is the worker
ID.
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• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each work. The number of elements in

the vector must match the number of workers.

TransferBaseWorkspaceVariables — Send model and workspace variables to
parallel workers
"on" (default) | "off"

Send model and workspace variables to parallel workers, specified as "on" or "off".
When the option is "on", the host sends variables used in models and defined in the base
MATLAB workspace to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[] (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.

SetupFcn — Function to run before training starts
[] (default) | function handle

Function to run before training starts, specified as a handle to a function having no input
arguments. This function is run once per worker before training begins. Write this
function to perform any processing that you need prior to training.

CleanupFcn — Function to run after training ends
[] (default) | function handle

Function to run after training ends, specified as a handle to a function having no input
arguments. You can write this function to clean up the workspace or perform other
processing after training terminates.

Verbose — Display training progress on the command line
false (0) (default) | true (1)

Display training progress on the command line, specified as the logical values false (0)
or true (1). Set to true to write information from each training episode to the MATLAB
command line during training.

StopOnError — Stop training when error occurs
"on" (default) | "off"
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Stop training when an error occurs during an episode, specified as "on" or "off". When
this option is "off", errors are captured and returned in the SimulationInfo output of
train, and training continues to the next episode.

Plots — Display training progress with the Episode Manager
"training-progress" (default) | "none"

Display training progress with the Episode Manager, specified as "training-
progress" or "none". By default, calling train opens the Reinforcement Learning
Episode Manager, which graphically and numerically displays information about the
training progress, such as the reward for each episode, average reward, number of
episodes, and total number of steps. (For more information, see train.) To turn off this
display, set this option to "none".

Output Arguments
trainOpts — Option set for training reinforcement learning agents
rlTrainingOptions object

Option set for training reinforcement learning agents, returned as an
rlTrainingOptions object. The property values of trainOpts are initialized to the
default values or to the values you specify with Name,Value pairs. You can further modify
the property values using dot notation. Use the options set as an input argument with
train when you train reinforcement learning agents.

See Also
train

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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setActor
Package: rl.agent

Set actor representation of reinforcement learning agent

Syntax
newAgent = setActor(oldAgent,actor)

Description
newAgent = setActor(oldAgent,actor) returns a new reinforcement learning
agent, newAgent, that uses the specified actor representation. Apart from the actor
representation, the new agent has the same configuration as the specified original agent,
oldAgent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameterValues(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
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modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameterValues(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Add Layer to Actor Representation

Assume that you have an existing reinforcement learning agent, agent.

Further, assume that this agent has an actor representation that contains the following
deep neural network structure.

originalActor = [
        imageInputLayer([4 1 1],'Normalization','none','Name','state')
        fullyConnectedLayer(2,'Name','action')];

Create an actor representation with an additional fully connected layer.

actorNetwork = [
        imageInputLayer([4 1 1],'Normalization','none','Name','state')
        fullyConnectedLayer(3,'Name','x');
        fullyConnectedLayer(2,'Name','action')];
actor = rlRepresentation(actorNetwork,...
    'Observation',{'state'},getObservationInfo(env),
    'Action',{'action'},getActionInfo(env));

Set the actor representation of the agent to the new augmented actor.

agent = setActor(agent,actor);

Input Arguments
oldAgent — Original reinforcement learning agent
rlDDPGAgent object | rlPGAgent object | rlACAgent object
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Original reinforcement learning agent that contains an actor representation, specified as
one of the following:

• rlDDPGAgent object
• rlACAgent object
• rlPGAgent object

actor — Actor representation
rlLayerRepresentation object | rlTableRepresentation object

Actor representation object, specified as one of the following:

• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

The input and output layers of the specified representation must match the observation
and action specifications of the original agent.

To create an actor representation, use one of the following methods:

• Create a representation using rlRepresentation.
• Obtain the existing actor representation from an agent using getActor.

Output Arguments
newAgent — Updated reinforcement learning agent
rlDDPGAgent object | rlPGAgent object | rlACAgent object

Updated reinforcement learning agent, returned as an agent object that uses the
specified actor representation. Apart from the actor representation, the new agent has
the same configuration as oldAgent.

See Also
getActor | getCritic | getLearnableParameterValues | rlRepresentation |
setCritic | setLearnableParameterValues

Topics
“Create Policy and Value Function Representations”
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“Import Policy and Value Function Representations”

Introduced in R2019a
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setCritic
Package: rl.agent

Set critic representation of reinforcement learning agent

Syntax
newAgent = setActor(oldAgent,critic)

Description
newAgent = setActor(oldAgent,critic) returns a new reinforcement learning
agent, newAgent, that uses the specified critic representation. Apart from the critic
representation, the new agent has the same configuration as the specified original agent,
oldAgent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameterValues(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
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modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

critic = setLearnableParameterValues(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Add Layer to Critic Representation

Assume that you have an existing reinforcement learning agent, agent.

Further, assume that this agent has a critic representation that contains the following
deep neural network structure.

originalCritic = [
        imageInputLayer([4 1 1],'Normalization','none','Name','state')
        fullyConnectedLayer(1,'Name','CriticFC')];

Create an actor representation with an additional fully connected layer.

criticNetwork = [
        imageInputLayer([4 1 1],'Normalization','none','Name','state')
        fullyConnectedLayer(3,'Name','x');
        fullyConnectedLayer(1,'Name','CriticFC')];
critic = rlRepresentation(criticNetwork,'Observation',{'state'},...
    getObservationInfo(env));

Set the critic representation of the agent to the new augmented critic.

agent = setCritic(critic);

Remove Baseline Critic from PG Agent

Assume that you have an existing PG agent, agent, with a baseline critic representation.
You can remove the baseline critic from the agent using setCritic.

agent = setCritic(agent,[]);
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When you remove the baseline critic in this way, the UseBaseline option of the agent is
automatically set to false.

Add Baseline Critic to PG Agent

Assume that you have an existing PG agent, agent, without a baseline critic
representation. You can add a baseline critic to the agent using setCritic.

First, create a critic representation, assuming you have an existing critic network,
criticNetwork.

baseline = rlRepresentation(criticNetwork,'Observation',{'state'},...
    getObservationInfo(env));

Then, set the critic in the agent.

agent = setCritic(agent,baseline);

When you add a baseline critic in this way, the UseBaseline option of the agent is
automatically set to true.

Input Arguments
oldAgent — Original reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object |
rlPGAgent object | rlACAgent object

Original reinforcement learning agent that contains an critic representation, specified as
one of the following:

• rlQAgent object
• rlSARSAAgent object
• rlDQNAgent object
• rlDDPGAgent object
• rlACAgent object
• rlPGAgent object that estimates a baseline value function using a critic
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critic — Critic representation
rlLayerRepresentation object | rlTableRepresentation object

Critic representation object, returned as one of the following:

• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

To create a critic representation, use one of the following methods:

• Create a representation using rlRepresentation.
• Obtain the existing critic representation from an agent using getCritic

Output Arguments
newAgent — Updated reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object |
rlPGAgent object | rlACAgent object

Updated reinforcement learning agent, returned as an agent object that uses the
specified critic representation. Apart from the actor representation, the new agent has
the same configuration as oldAgent.

See Also
getActor | getCritic | getLearnableParameterValues | rlRepresentation |
setActor | setLearnableParameterValues

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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setLearnableParameterValues
Package: rl.util

Set learnable parameter values of policy or value function representation

Syntax
newRep = setLearnableParameterValues(oldRep,val)

Description
newRep = setLearnableParameterValues(oldRep,val) returns a new policy or
value function representation, newRep, with the same structure as the original
representation, oldRep, and the learnable parameter values specified in val.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameterValues(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);
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Set the parameter values of the critic to the new modified values.

critic = setLearnableParameterValues(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example,
load the trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameterValues(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameterValues(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments
oldRep — Original policy or value function representation
rlLayerRepresentation object | rlTableRepresentation object
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Original policy or value function representation, specified as one of the following:

• rlLayerRepresentation object for deep neural network representations
• rlTableRepresentation object for value table or Q table representations

To create a policy or value function representation, use one of the following methods:

• Create a representation using rlRepresentation.
• Obtain the existing value function representation from an agent using getCritic
• Obtain the existing policy representation from an agent using getActor.

val — Learnable parameter values
cell array

Learnable parameter values for the representation object, specified as a cell array. The
parameters in val must be compatible with the structure and parameterization of
oldRep.

To obtain a cell array of learnable parameter values from an existing representation,
which you can then modify, use the getLearnableParameterValues function.

Output Arguments
newRep — New policy or value function representation
rlLayerRepresentation object | rlTableRepresentation object

New policy or value function representation, returned as a representation object of the
same type as oldRep. newRep has the same structure as oldRep but with parameter
values from val.

See Also
getActor | getCritic | getLearnableParameterValues | rlRepresentation |
setActor | setCritic

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”
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Introduced in R2019a
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sim
Package: rl.env

Simulate a trained reinforcement learning agent within a specified environment

Syntax
experience = sim(env,agent,simOpts)
experience = sim(agent,env,simOpts)

Description
experience = sim(env,agent,simOpts) simulates a reinforcement learning
environment against an agent configured for that environment..

experience = sim(agent,env,simOpts) performs the same simulation as the
previous syntax.

Examples

Simulate a Reinforcement Learning Environment

Simulate a reinforcement learning environment with an agent configured for that
environment. For this example, load an environment and agent that are already
configured. The environment is a discrete cart-pole environment created with
rlPredefinedEnv. The agent is a policy gradient (rlPGAgent) agent. For more
information about the environment and agent used in this example, see “Train PG Agent
to Balance Cart-Pole System”.

rng(0) % for reproducibility
load RLSimExample.mat
env

env = 
  CartPoleDiscreteAction with properties:
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                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
                    State: [4x1 double]

agent

agent = 
  rlPGAgent with properties:

    AgentOptions: [1x1 rl.option.rlPGAgentOptions]

Typically, you train the agent using train and simulate the environment to test the
performance of the trained agent. For this example, simulate the environment using the
agent you loaded. Configure simulation options, specifying that the simulation run for 100
steps.

simOpts = rlSimulationOptions('MaxSteps',100);

For the predefined cart-pole environment used in this example. you can use plot to
generate a visualization of the cart-pole system. When you simulate the environment, this
plot updates automatically so that you can watch the system evolve during the simulation.

plot(env)
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Simulate the environment.

experience = sim(env,agent,simOpts)

experience = struct with fields:
       Observation: [1x1 struct]
            Action: [1x1 struct]
            Reward: [1x1 timeseries]
            IsDone: [1x1 timeseries]
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    SimulationInfo: [1x1 struct]

The output structure experience records the observations collected from the
environment, the action and reward, and other data collected during the simulation. Each
field contains is a timeseries or a structure of timeseries data. For instance,
experience.Action is a timeseries containing the action imposed on the cart-pole
system by the agent at each step of the simulation.

experience.Action

ans = struct with fields:
    CartPoleAction: [1x1 timeseries]

Input Arguments
env — Environment
reinforcement learning environment object

Environment in which the agent acts, specified as a reinforcement learning environment
object, such as:

• A predefined MATLAB or Simulink environment created using rlPredefinedEnv
• A custom MATLAB environment you create with functions such as rlFunctionEnv or

rlCreateEnvTemplate
• A custom Simulink environment you create using rlSimulinkEnv

For more information about creating and configuring environments, see:

• “Create MATLAB Environments for Reinforcement Learning”
• “Create Simulink Environments for Reinforcement Learning”

When env is a Simulink environment, calling sim compiles and simulates the model
associated with the environment.

agent — Agent
reinforcement learning agent object

Agent to train, specified as a reinforcement learning agent object, such as an rlACAgent
or rlDDPGAgent object, or a custom agent. Before simulation, you must configure the
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actor and critic representations of the agent. For more information about how to create
and configure agents for reinforcement learning, see “Reinforcement Learning Agents”.

simOpts — Simulation options
rlSimulationOptions object

Simulation options, specified as an rlSimulationOptions object. Use this argument to
specify such parameters and options as:

• Number of steps per simulation
• Number of simulations to run

For details, see rlSimulationOptions.

Output Arguments
experience — Simulation results
structure | structure array

Simulation results, returned as a structure or structure array. The number f elements in
the array is equal to the number of simulations specified by the NumSimulations option
of rlSimulationOptions The fields of the experience structure are as follows.

Observation — Observations
structure

Observations collected from the environment, returned as a structure with fields
corresponding to the observations specified in the environment. Each field contains a
timeseries of length N + 1, where N is the number of simulation steps.

To obtain the current observation and the next observation for a given simulation step,
use code such as the following, assuming one of the fields of Observation is obs1.

Obs = getSamples(experience.Observation.obs1,1:N);
NextObs = getSamples(experience.Observation.obs1,2:N+1);

These values can be useful if you are writing your own training algorithm using sim to
generate experiences for training.

Action — Actions
structure
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Actions computed by the agent, returned as a structure with fields corresponding to the
action signals specified in the environment. Each field contains a timeseries of length
N, where N is the number of simulation steps.

Reward — Rewards
timeseries

Reward at each step in the simulation, returned as a timeseries of length N, where N is
the number of simulation steps.

IsDone — Flag indicating termination of episode
timeseries

Flag indicating termination of episode, returned as a timeseries of a scalar logical
signal. This flag is set at each step by the environment, according to conditions you
specify for episode termination when you configure the environment. When the
environment sets this flag to 1, simulation terminates.

SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOutput objects

Information collected during simulation, returned as:

• For MATLAB environments, a structure containing the field SimulationError. This
structure contains any errors that occurred during simulation.

• For Simulink environments, a Simulink.SimulationOutput object containing
simulation data. Recorded data includes any signals and states that the model is
configured to log, simulation metadata, and any errors that occurred.

See Also
rlSimulationOptions | train

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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train
Package: rl.agent

Train a reinforcement learning agent within a specified environment

Syntax
trainStats = train(agent,env,trainOpts)

Description
trainStats = train(agent,env,trainOpts) trains a reinforcement learning agent
with a specified environment. After each training episode, train updates the parameters
of agent to maximize the expected long-term reward of the environment. When training
terminates, the agent reflects the state of training at termination.

Use the training options trainOpts to specify training parameters such as the criteria
for termination of training, when to save agents, the maximum number of episodes to
train, and the maximum number of steps per episode.

Examples

Train a Reinforcement Learning Agent

Configure the training parameters and train a reinforcement learning agent. Typically,
before training, you must configure your environment and agent. For this example, load
an environment and agent that are already configured. The environment is a discrete
cart-pole environment created with rlPredefinedEnv. The agent is a Policy Gradient
(rlPGAgent) agent. For more information about the environment and agent used in this
example, see “Train PG Agent to Balance Cart-Pole System”.

rng(0) % for reproducibility
load RLTrainExample.mat
env
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env = 
  CartPoleDiscreteAction with properties:

                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
                    State: [4×1 double]

agent

agent = 
  rlPGAgent with properties:

    AgentOptions: [1×1 rl.option.rlPGAgentOptions]

To train this agent, you must first specify training parameters using
rlTrainingOptions. These parameters include the maximum number of episodes to
train, the maximum steps per episode, and the conditions for terminating training. For
this example, use a maximum of 1000 episodes and 500 steps per episode. Instruct the
training to stop when the average reward over the previous five episodes reaches 500.
Create a default options set and use dot notation to change some of the parameter values.

trainOpts = rlTrainingOptions;

trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 500;
trainOpts.ScoreAveragingWindowLength = 5;

During training, the train command can save candidate agents that give good results.
Further configure the training options to save an agent when the episode reward exceeds
500. Save the agent to a folder called savedAgents.
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trainOpts.SaveAgentCriteria = "EpisodeReward";
trainOpts.SaveAgentValue = 500;
trainOpts.SaveAgentDirectory = "savedAgents";

Finally, turn off the command-line display. Turn on the Reinforcement Learning Episode
Manager so you can observe the training progress visually.

trainOpts.Verbose = false;
trainOpts.Plots = "training-progress";

You are now ready to train the PG agent. For the predefined cart-pole environment used
in this example. you can use plot to generate a visualization of the cart-pole system.

plot(env)

When you run this example, both this visualization and the Reinforcement Learning
Episode Manager update with each training episode. Place them side by side on your
screen to observe the progress, and train the agent. (This computation can take 20
minutes or more.)

trainingInfo = train(agent,env,trainOpts);
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The Episode Manager shows that the training successfully reaches the termination
condition of a reward of 500 averaged over the previous five episodes. At each training
episode, train updates agent with the parameters learned in the previous episode.
When training terminates, you can simulate the environment with the trained agent to
evaluate its performance. The environment plot updates during simulation as it did during
training.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

During training, train saves to disk any agents that meet the condition specified with
trainOps.SaveAgentCritera and trainOpts.SaveAgentValue. To test the
performance of any of those agents, you can load the data from the data files in the folder
you specified using trainOpts.SaveAgentDirectory, and simulate the environment
with that agent.

Input Arguments
agent — Agent
reinforcement learning agent object

Agent to train, specified as a reinforcement learning agent object, such as an rlACAgent
or rlDDPGAgent object, or a custom agent. Before training, you must configure the actor
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and critic representations of the agent. For more information about how to create and
configure agents for reinforcement learning, see “Reinforcement Learning Agents”.

env — Environment
reinforcement learning environment object

Environment in which the agent acts, specified as a reinforcement learning environment
object, such as:

• A predefined MATLAB or Simulink environment created using rlPredefinedEnv
• A custom MATLAB environment you create with functions such as rlFunctionEnv or

rlCreateEnvTemplate
• A custom Simulink environment you create using rlSimulinkEnv

For more information about creating and configuring environments, see:

• “Create MATLAB Environments for Reinforcement Learning”
• “Create Simulink Environments for Reinforcement Learning”

When env is a Simulink environment, calling train compiles and simulates the model
associated with the environment.

trainOpts — Training parameters and options
rlTrainingOptions object

Training parameters and options, specified as an rlTrainingOptions object. Use this
argument to specify such parameters and options as:

• Criteria for ending training
• Criteria for saving candidate agents
• How to display training progress
• Options for parallel computing

For details, see rlTrainingOptions.

Output Arguments
trainStats — Training episode data
structure
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Training episode data, returned as a structure containing the following fields.

EpisodeIndex — Episode numbers
[1;2;…;N]

Episode numbers, returned as the column vector [1;2;…;N], where N is the number of
episodes in the training run. This vector is useful if you want to plot the evolution of other
quantities from episode to episode.

EpisodeReward — Reward for each episode
column vector

Reward for each episode, returned in a column vector of length N. Each entry contains the
reward for the corresponding episode.

EpisodeSteps — Number of steps in each episode
column vector

Number of steps in each episode, returned in a column vector of length N. Each entry
contains the number of steps in the corresponding episode.

AverageReward — Average reward over the averaging window
column vector

Average reward over the averaging window specified in trainOpts, returned as a
column vector of length N. Each entry contains the average award computed at the end of
the corresponding episode.

TotalAgentSteps — Total number of steps
column vector

Total number of agent steps in training, returned as a column vector of length N. Each
entry contains the cumulative sum of the entries in EpisodeSteps up to that point.

EpisodeQ0 — Critic estimate of long-term reward for each episode
column vector

Critic estimate of long-term reward using the current agent and the environment initial
conditions, returned as a column vector of length N. Each entry is the critic estimate (Q0)
for the agent of the corresponding episode. This field is present only for agents that have
critics, such as rlDDPGAgent and rlDQNAgent.
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SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOutput objects

Information collected during the simulations performed for training, returned as:

• For training in MATLAB environments, a structure containing the field
SimulationError. This field is a column vector with one entry per episode. When
the StopOnError option of rlTrainingOptions is "off", each entry contains any
errors that occurred during the corresponding episode.

• For training in Simulink environments, a vector of Simulink.SimulationOutput
objects containing simulation data recorded during the corresponding episode.
Recorded data for an episode includes any signals and states that the model is
configured to log, simulation metadata, and any errors that occurred during the
corresponding episode.

Tips
• train updates the agent as training progresses. To preserve the original agent

parameters for later use, save the agent to a MAT-file.
• By default, calling train opens the Reinforcement Learning Episode Manager, which

lets you visualize the progress of the training. The Episode Manager plot shows the
reward for each episode, a running average reward value, and the critic estimate Q0
(for agents that have critics). The Episode Manager also displays various episode and
training statistics. To turn off the Reinforcement Learning Episode Manager, set the
Plots option of trainOpts to "none".

• If you use a predefined environment for which there is a visualization, you can use
plot(env) to visualize the environment. If you call plot(env) before training, then
the visualization updates during training to allow you to visualize the progress of each
episode. (For custom environments, you must implement your own plot method.)

• Training terminates when the conditions specified in trainOpts are satisfied. To
terminate training in progress, in the Reinforcement Learning Episode Manager, click
Stop Training. Because train updates the agent at each episode, you can resume
training by calling train(agent,env,trainOpts) again, without losing the trained
parameters learned during the first call to train.

• During training, you can save candidate agents that meet conditions you specify with
trainOpts. For instance, you can save any agent whose episode reward exceeds a
certain value, even if the overall condition for terminating training is not yet satisfied.
train stores saved agents in a MAT-file in the folder you specify with trainOpts.
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Saved agents can be useful, for instance, to allow you to test candidate agents
generated during a long-running training process. For details about saving criteria and
saving location, see rlTrainingOptions.

Algorithms
In general, train performs the following iterative steps:

1 Initialize agent.
2 For each episode:

a Reset the environment.
b Get the initial observation s0 from the environment.
c Compute the initial action a0 = μ(s0).
d Set the current action to the initial action (a←a0) and set the current observation

to the initial observation (s←s0).
e While the episode is not finished or terminated:

i Step the environment with action a to obtain the next observation s' and the
reward r.

ii Learn from the experience set (s,a,r,s').
iii Compute the next action a' = μ(s').
iv Update the current action with the next action (a←a') and update the current

observation with the next observation (s←s').
v Break if the episode termination conditions defined in the environment are

met.
3 If the training termination condition defined by trainOpts is met, terminate

training. Otherwise, begin the next episode.

The specifics of how train performs these computations depends on your configuration
of the agent and environment. For instance, resetting the environment at the start of each
episode can include randomizing initial state values, if you configure your environment to
do so.

1 Functions — Alphabetical List

1-162



Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To train in parallel, set the UseParallel and ParallelizationOptions options in the
option set trainOpts. For more information, see rlTrainingOptions.

See Also
rlTrainingOptions | sim

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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validateEnvironment
Package: rl.env

Validate custom reinforcement learning environment

Syntax
validateEnvironment(env)

Description
validateEnvironment(env) validates a reinforcement learning environment. This
function is useful when:

• You are using a custom environment for which you supplied your own step and reset
functions, such as an environment created using rlCreateEnvTemplate.

• You are using an environment you created from a Simulink model using
rlSimulinkEnv.

validateEnvironment resets the environment, generates an initial observation and
action, and simulates the environment for one or two steps (see “Algorithms” on page 1-
166). If there are no errors during these operations, validation is successful, and
validateEnvironment returns no result. If errors occur, these errors appear in the
MATLAB command window. Use the errors to determine what to change in your
observation specification, action specification, custom functions, or Simulink model.

Examples

Validate Simulink Environment

Create and validate and environment for the rlwatertank model, which represents a
control system containing a reinforcement learning agent. (For details about this model,
see “Create Simulink Environment and Train Agent”.)
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Open the model.

open_system('rlwatertank')

Create observation and action specifications for the environment.

obsInfo = rlNumericSpec([3 1],...
    'LowerLimit',[-inf -inf 0  ]',...
    'UpperLimit',[ inf  inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'flow';
numActions = numel(actInfo);

Create an environment from the model. Then, use validateEnvironment to check
whether the model is configured correctly.
env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent',obsInfo,actInfo);
validateEnvironment(env)

Error using rl.env.SimulinkEnvWithAgent/validateEnvironment (line 187)
Simulink environment validation requires an agent in the MATLAB base workspace 
or in a data dictionary linked to the model. Specify the agent in the Simulink model.

validateEnvironment attempts to compile the model, initialize the environment and
the agent, and simulate the model. In this case, the RL Agent block is configured to use
an agent called agent, but no such variable exists in the MATLAB workspace. Thus, the
function returns an error indicating the problem.

Create an appropriate agent for this system using the commands detailed in the “Create
Simulink Environment and Train Agent”. Then, run validateEnvironment again.

validateEnvironment(env)

This time, the initialization and two-step simulation runs without error. Therefore,
validateEnvironment returns nothing, and validation is successful.
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validateEnvironment leaves the model itself unchanged, restoring all model
parameters to their original values.

Input Arguments
env — Environment to validate
environment object

Environment to validate, specified as a reinforcement learning environment object, such
as:

• A custom MATLAB environment you create with rlCreateEnvTemplate. In this case,
validateEnvironment checks that the observations and actions generated during
simulation of the environment are consistent in size, data type, and value range with
the observation specification and action specification. It also checks that your custom
step and reset functions run without error. (When you create a custom environment
using rlFunctionEnv, the software runs validateEnvironment automatically.)

• A custom Simulink environment you create using rlSimulinkEnv. If you use a
Simulink environment, you must also have an agent defined and associated with the
RL Agent block in the model. For a Simulink model, validateEnvironment checks
that the model compiles and runs without error. The function does not dirty your
model.

For more information about creating and configuring environments, see:

• “Create MATLAB Environments for Reinforcement Learning”
• “Create Simulink Environments for Reinforcement Learning”

Algorithms
validateEnvironment works by running a brief simulation of the environment and
making sure that the generated signals match the observation and action specifications
you provided when you created the environment.

MATLAB Environments
For MATLAB environments, validation includes the following steps.
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1 Reset the environment using the reset function associated with the environment.
2 Obtain the first observation and check whether it is consistent with the dimension,

data type, and range of values in the observation specification.
3 Generate a test action based on the dimension, data type, and range of values in the

action specification.
4 Simulate the environment for one step using the generated action and the step

function associated with the environment.
5 Obtain the new observation signal and check whether it is consistent with the

dimension, data type, and range of values in the observation specification.

If any of these operations generates an error, validateEnvironment returns the error.
If validateEnvironment returns no result, then validation is successful.

Simulink Environments
For Simulink environments, validation includes the following steps.

1 Reset the environment.
2 Simulate the model for two time steps.

If any of these operations generates an error, validateEnvironment returns the error.
If validateEnvironment returns no result, then validation is successful.

validateEnvironment performs these steps without dirtying the model, and leaves all
model parameters in the state they were in when you called the function.

See Also
rlCreateEnvTemplate | rlFunctionEnv | rlSimulinkEnv

Topics
“Create Simulink Environment and Train Agent”
“Create Custom MATLAB Environment from Template”

Introduced in R2019a

 validateEnvironment

1-167





Objects — Alphabetical List

2



quadraticLayer
Quadratic layer for actor or critic network

Description
QuadraticLayer is a deep neural network layer that takes an input vector and outputs a
vector of quadratic monomials constructed from the input elements. For example,
consider an input vector U = [u1 u2 u3]. For this input, a quadratic layer gives the
output Y = [u1*u1 u1*u2 u2*u2 u1*u3 u2*u3 u3*u3].

The quadratic layer is useful when you need a layer whose output is some quadratic
function of its inputs. For instance, inserting a QuadraticLayer into a network lets you
recreate the structure of quadratic value functions such as those used in LQR controller
design. For an example that uses QuadraticLayer, see “Train DDPG Agent to Control
Double Integrator System”.

Creation

Syntax
qLayer = quadraticLayer
qLayer = quadraticLayer(Name,Value)

Description
qLayer = quadraticLayer creates a quadratic layer with default property values.

qLayer = quadraticLayer(Name,Value) sets properties using Name,Value pairs.
For example, quadraticLayer('Name','quadlayer') creates a quadratic layer and
assigns the name 'quadlayer'.
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Properties
Name — Name of layer
'quadratic' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with this layer
and Name is set to '', then the software automatically assigns a name to the layer at
training time.

Description — Description of layer
'quadratic layer' (default) | character vector

This property is read-only.

Description of layer, specified when you create the quadratic layer and stored as a
character vector. When you create the quadratic layer, you can use this property to give it
a description that helps you identify its purpose.

Examples

Create Quadratic Layer

Create a quadratic layer that converts an input vector U into a vector of quadratic
monomials constructed from binary combinations of the elements of U.

qLayer = quadraticLayer

qLayer = 
  QuadraticLayer with properties:

    Name: 'quadratic'

  Show all properties

Confirm that the layer produces the expected output. For instance, for U = [u1 u2 u3],
the expected output is [u1*u1 u1*u2 u2*u2 u1*u3 u2*u3 u3*u3].

predict(qLayer,[1 2 3])
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ans = 1×6

     1     2     4     3     6     9

You can incorporate qLayer into an actor network or critic network for reinforcement
learning.

See Also
scalingLayer

Topics
“Train DDPG Agent to Control Double Integrator System”
“Create Policy and Value Function Representations”

Introduced in R2019a
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rlFiniteSetSpec
Create discrete action or observation data specifications for reinforcement learning
environments

Description
An rlFiniteSetSpec object specifies discrete action or observation data specifications
for reinforcement learning environments.

Creation

Syntax
spec = rlFiniteSetSpec(elements)

Description
spec = rlFiniteSetSpec(elements) creates a data specification with a discrete set
of actions or observations, setting the Elements property.

Properties
Elements — Set of valid actions or observations
vector | cell array

Set of valid actions or observations for the environment, specified as one of the following:

• Vector — Specify valid numeric values for a single action or single observation.
• Cell array — Specify valid numeric value combinations when you have more than one

action or observation. Each entry of the cell array must have the same dimensions.

Name — Name of the rlFiniteSetSpec object
string (default)
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Name of the rlFiniteSetSpec object, specified as a string. Use this property to set a
meaningful name for your finite set.

Description — Description of the rlFiniteSetSpec object
string (default)

Description of the rlFiniteSetSpec object, specified as a string. Use this property to
specify a meaningful description of the finite set values.

Dimension — Size of each element
vector (default)

This property is read-only.

Size of each element, specified as a vector.

If you specify Elements as a vector, then Dimension is [1 1]. Otherwise, if you specify
a cell array, then Dimension indicates the size of the entries in Elements.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions
rlSimulinkEnv Create a reinforcement learning environment using a dynamic model

implemented in Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using

functions
rlRepresentation Model representation for reinforcement learning agents

Examples

Reinforcement Learning Environment for Simulink models

For this example, consider the rlSimplePendulumModel Simulink model. The model is
a simple frictionless pendulum that is initially hanging in a downward position.
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Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Assign the agent block path information, and create rlNumericSpec and
rlFiniteSetSpec objects for the observation and action information. You can use dot
notation to assign property values of the rlNumericSpec and rlFiniteSetSpec
objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = rlNumericSpec([3 1])

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([2 1])

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [2x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfo.Name = 'observations';
actInfo.Name = 'torque';

Create the reinforcement learning environment for the Simulink model using information
extracted in the previous steps.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
  SimulinkEnvWithAgent with properties:
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             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'

You can also include a reset function using dot notation. For this example, consider
randomly initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
    UseFastRestart: 'on'

Specify Discrete Value Set for Multiple Actions

If the actor for your reinforcement learning agent has multiple outputs, each with a
discrete action space, you can specify the possible discrete actions combinations using an
rlFiniteSetSpec object.

Suppose that the valid values for a two-output system are [1 2] for the first output and
[10 20 30] for the second output. Create a discrete action space specification for all
possible input combinations.

actionSpec = rlFiniteSetSpec({[1 10],[1 20],[1 30],...
                              [2 10],[2 20],[2 30]})

actionSpec = 
  rlFiniteSetSpec with properties:

       Elements: {6x1 cell}
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 2]
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       DataType: "double"

See Also
getActionInfo | getObservationInfo | rlFunctionEnv | rlNumericSpec |
rlRepresentation | rlSimulinkEnv

Introduced in R2019a
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rlFunctionEnv
Specify custom reinforcement learning environment dynamics using functions

Description
Use rlFunctionEnv to define a custom reinforcement learning environment. You
provide MATLAB functions that define the step and reset behavior for the environment.
This object is useful when you want to customize your environment beyond the predefined
environments available with rlPredefinedEnv.

Creation

Syntax
env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn)

Description
env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn) creates a
reinforcement learning environment using the observation specification and agent
specification you provide. You also provide your own MATLAB functions that define step
and reset behavior for the environment.

Input Arguments
obsInfo — Observation specification
spec object

Observation specification, specified as a reinforcement learning spec object created with
a spec command such as rlFiniteSetSpec or rlNumericSpec. This specification
defines such information about the observations as the dimensions and names of the
observation signals.
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actInfo — Action specification
spec object

Action specification, specified as a reinforcement learning spec object created with a spec
command such as rlFiniteSetSpec or rlNumericSpec. The specification defines such
information about the actions as the dimensions and names of the action signals.

stepfcn — Step behavior for the environment
function | function handle | anonymous function

Step behavior for the environment, specified as a function, function handle, or anonymous
function. stepfcn sets the value of the StepFcn property.

resetfcn — Reset behavior for the environment
function | function handle | anonymous function

Reset behavior for the environment, specified as a function, function handle, or
anonymous function. resetfcn sets the value of the ResetFcn property.

Properties
StepFcn — Step behavior for the environment
function | function handle | anonymous function

Step behavior for the environment, specified as a function, function handle, or anonymous
function. When you create an rlFunctionEnv object, the stepfcn input argument sets
the value of this property.

StepFcn is a function that you provide which describes how the environment advances to
the next state from a given action. This function must have two inputs and four outputs,
as illustrated by the following signature:
[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

Thus, the step function computes the values of the observation and reward for the given
action in the environment. The required input and output arguments are:

• Action and Observation — The current action and the returned observation. These
values must match the dimensions and data types specified in actInfo and obsInfo,
respectively.
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• Reward — Reward for the current step, returned as a scalar value.
• IsDone — Logical value indicating whether to end the simulation episode. The step

function that you define can include logic to decide whether to end the simulation
based on the observation, reward, or any other values.

• LoggedSignals — Any data that you want to pass from one step to the next, specified
as a structure.

To use additional input arguments beyond this required set, specify StepFcn using a
function handle or an anonymous function. For an example showing multiple ways to
define a step function, see “Create MATLAB Environment using Custom Functions”.

ResetFcn — Reset behavior for the environment
function | function handle | anonymous function

Reset behavior for the environment, specified as a function, function handle, or
anonymous function. When you create a rlFunctionEnv object, the resetfcn input
argument sets the value of this property.

The reset function that you provide must have no inputs and two outputs, as illustrated by
the following signature.

[InitialObservation,LoggedSignals] = myResetFunction

Thus, the reset function computes the initial values of the observation signals. For
instance, sim calls the reset function to reset the environment at the start of each
simulation, and train calls it at the start of each training episode. Therefore, you might
create a reset function that randomizes certain state values, such that each training
episode begins from different initial conditions.

The InitialObservation output must match the dimensions and data type of
obsInfo.

To pass information from the reset condition into the first step, specify that information in
the reset function as the output structure LoggedSignals.

To use input arguments with your reset function, specify ResetFcn using a function
handle or an anonymous function. For an example showing multiple ways to define a reset
function, see “Create MATLAB Environment using Custom Functions”.

LoggedSignals — Information to pass to next step
structure
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Information to pass to the next step, specified as a structure. When you create the
environment, whatever you define as the LoggedSignals output of resetfcn initializes
this property. When a step occurs, the software populates this property with data to pass
to the next step, as defined in stepfcn.

Object Functions
getActionInfo Obtain action data specifications from reinforcement learning

environment or agent
getObservationInfo Obtain observation data specifications from reinforcement

learning environment or agent
sim Simulate a trained reinforcement learning agent within a specified

environment
validateEnvironment Validate custom reinforcement learning environment

Examples

Create Custom MATLAB Environment

Create a reinforcement learning environment by supplying custom dynamic functions in
MATLAB®. Using rlFunctionEnv, you can create a MATLAB reinforcement learning
environment from an observation specification, action specification, and step and reset
functions that you define.

For this example, create an environment that represents a system for balancing a cart on
a pole. The observations from the environment are the cart position, cart velocity,
pendulum angle, and pendulum angle derivative. (For additional details about this
environment, see “Create MATLAB Environment using Custom Functions”.) Create an
observation specification for those signals.

oinfo = rlNumericSpec([4 1]);
oinfo.Name = 'CartPole States';
oinfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two
possible force values to the cart, –10 N or 10 N. Create the action specification for those
actions.
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ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

Next, specify the custom step and reset functions. For this example, use the supplied
functions myResetFunction.m and myStepFunction.m. For details about these
functions and how they are constructed, see “Create MATLAB Environment using Custom
Functions”.

Construct the custom environment using the defined observation specification, action
specification, and function names.

addpath(fullfile(matlabroot,'examples','rl','main'))    % Make sure the functions are on the path
env = rlFunctionEnv(oinfo,ActionInfo,'myStepFunction','myResetFunction');

You can create agents for env and train them within the environment as you would for
any other reinforcement learning environment.

As an alternative to using function names, you can specify the functions as function
handles. For more details and an example, see “Create MATLAB Environment using
Custom Functions”.

See Also
rlCreateEnvTemplate | rlPredefinedEnv

Topics
“Create MATLAB Environment using Custom Functions”

Introduced in R2019a
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rlMDPEnv
Create Markov decision process environment for reinforcement learning

Description
A Markov decision process (MDP) is a discrete time stochastic control process. It provides
a mathematical framework for modeling decision making in situations where outcomes
are partly random and partly under the control of the decision maker. MDPs are useful for
studying optimization problems solved using reinforcement learning. Use rlMDPEnv to
create a MATLAB based Markov decision process environment object rlMDPEnv for
reinforcement learning.

Creation

Syntax
env = rlMDPEnv(MDP)

Description
env = rlMDPEnv(MDP) creates a reinforcement learning environment env with the
specified MDP model.

Input Arguments
MDP — Markov decision process model
GridWorld object

Markov decision process model, specified as a GridWorld object.

For more information on creating GridWorld objects, see createGridWorld.
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Properties
Model — Markov decision process model
GridWorld object

Markov decision process model, specified as a GridWorld object.

ResetFcn — Reset function
function handle

Reset function, specified as a function handle.

Object Functions
getActionInfo Obtain action data specifications from reinforcement learning

environment or agent
getObservationInfo Obtain observation data specifications from reinforcement

learning environment or agent
sim Simulate a trained reinforcement learning agent within a specified

environment
train Train a reinforcement learning agent within a specified

environment
validateEnvironment Validate custom reinforcement learning environment

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South =
2, East = 3, West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.
5 The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).
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6 All other actions result in -1 reward.

First, create a GridWorld object using the createGridWorld function.

GW = createGridWorld(5,5)

GW = 
  GridWorld with properties:

          GridSize: [5 5]
      CurrentState: "[1,1]"
            States: [25x1 string]
           Actions: [4x1 string]
                 T: [25x25x4 double]
                 R: [25x25x4 double]
    ObstacleStates: [0x1 string]
    TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.
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GW.CurrentState = '[2,1]';
GW.TerminalStates = '[5,5]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

Update the state transition matrix for the obstacle states and set the jump rule over the
obstacle states.

updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;

Next, define the rewards in the reward transition matrix.

nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rlMDPEnv to create a grid world environment using the GridWorld object GW.

env = rlMDPEnv(GW)

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []

You can visualize the grid world environment using the plot function.

plot(env)
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See Also
createGridWorld | rlPredefinedEnv

Topics
“Train Reinforcement Learning Agent in Basic Grid World”
“Create Custom Grid World Environments”

Introduced in R2019a
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rlNumericSpec
Create continuous action or observation data specifications for reinforcement learning
environments

Description
An rlNumericSpec object specifies continuous action or observation data specifications
for reinforcement learning environments.

Creation

Syntax
spec = rlNumericSpec(dimension)
spec = rlNumericSpec(dimension,Name,Value)

Description
spec = rlNumericSpec(dimension) creates a data specification for continuous
actions or observations and sets the Dimension property.

spec = rlNumericSpec(dimension,Name,Value) sets “Properties” on page 2-20
using name-value pair arguments.

Properties
LowerLimit — Lower limit of the data space
'-inf' (default) | scalar | matrix

Lower limit of the data space, specified as a scalar or matrix of the same size as the data
space. When LowerLimit is specified as a scalar, rlNumericSpec applies it to all
entries in the data space.
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UpperLimit — Upper limit of the data space
'inf' (default) | scalar | matrix

Upper limit of the data space, specified as a scalar or matrix of the same size as the data
space. When UpperLimit is specified as a scalar, rlNumericSpec applies it to all
entries in the data space.

Name — Name of the rlNumericSpec object
string (default)

Name of the rlNumericSpec object, specified as a string.

Description — Description of the rlNumericSpec object
string (default)

Description of the rlNumericSpec object, specified as a string.

Dimension — Dimension of the data space
numeric vector (default)

This property is read-only.

Dimension of the data space, specified as a numeric vector.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions
rlSimulinkEnv Create a reinforcement learning environment using a dynamic model

implemented in Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using

functions
rlRepresentation Model representation for reinforcement learning agents

Examples
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Reinforcement Learning Environment for Simulink models

For this example, consider the rlSimplePendulumModel Simulink model. The model is
a simple frictionless pendulum that is initially hanging in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Assign the agent block path information, and create rlNumericSpec and
rlFiniteSetSpec objects for the observation and action information. You can use dot
notation to assign property values of the rlNumericSpec and rlFiniteSetSpec
objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = rlNumericSpec([3 1])

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([2 1])

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [2x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfo.Name = 'observations';
actInfo.Name = 'torque';
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Create the reinforcement learning environment for the Simulink model using information
extracted in the previous steps.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: []
    UseFastRestart: 'on'

You can also include a reset function using dot notation. For this example, consider
randomly initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
  SimulinkEnvWithAgent with properties:

             Model: "rlSimplePendulumModel"
        AgentBlock: "rlSimplePendulumModel/RL Agent"
          ResetFcn: @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
    UseFastRestart: 'on'

See Also
getActionInfo | getObservationInfo | rlFiniteSetSpec | rlFunctionEnv |
rlRepresentation | rlSimulinkEnv

Topics
“Train DDPG Agent for Adaptive Cruise Control”

Introduced in R2019a
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rlTable
Value table or Q table

Description
You can create value tables and Q tables to represent critic networks for reinforcement
learning. Value tables store rewards for a finite set of observations. Q tables store
rewards for corresponding finite observation-action pairs.

To create a value function representation using an rlTable object, use the
rlRepresentation function.

Creation

Syntax
T = rlTable(obsinfo)
T = rlTable(obsinfo,actinfo)

Description
T = rlTable(obsinfo) creates a value table for the given discrete observations.

T = rlTable(obsinfo,actinfo) creates a Q table for the given discrete observations
and actions.

Input Arguments
obsinfo — Observation specification
rlFiniteSetSpec object

Observation specification, specified as an rlFiniteSetSpec object.
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actinfo — Action specification
rlFiniteSetSpec object

Action specification, specified as an rlFiniteSetSpec object.

Properties
Table — Reward table
array

Reward table, returned as an array. When Table is a:

• Value table, it contains NO rows, where NO is the number of finite observation values.
• Q table, it contains NO rows and NA columns, where NA is the number of possible finite

actions.

Object Functions
rlRepresentation Model representation for reinforcement learning agents

See Also

Topics
“Create Policy and Value Function Representations”

Introduced in R2019a
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scalingLayer
Scaling layer for actor or critic network

Description
ScalingLayer is a deep neural network layer that linearly scales and biases an input
array U, giving an output Y = Scale.*U + Bias. You can incorporate this layer into the
deep neural networks you define for actors or critics in reinforcement learning agents.
This layer is useful for scaling and shifting the outputs of nonlinear layers, such as
tanhLayer and sigmoid.

For instance, a tanhLayer gives bounded output that falls between –1 and 1. If your
actor network output has different bounds (as defined in the actor specification), you can
include a ScalingLayer as an output to scale and shift the actor network output
appropriately.

Scaling layer parameters are not learnable.

Creation

Syntax
sLayer = scalingLayer
sLayer = scalingLayer(Name,Value)

Description
sLayer = scalingLayer creates a scaling layer with default property values.

sLayer = scalingLayer(Name,Value) sets properties using Name,Value pairs. For
example, scalingLayer('Scale',0.5) creates a scaling layer that scales its input by
0.5. Enclose each property name in quotes.
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Properties
Name — Name of layer
'scaling' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with this layer
and Name is set to '', then the software automatically assigns a name to the layer at
training time.

Description — Description of layer
'Scaling layer' (default) | character vector

This property is read-only.

Description of layer, specified when you create the scaling layer and stored as a character
vector. When you create the scaling layer, you can use this property to give it a
description that helps you identify its purpose.

Scale — Element-wise scale on input
1 (default) | scalar | array

Element-wise scale on the input to the scaling layer, specified as one of the following:

• Scalar — Specify the same scale factor for all elements of the input array.
• Array with the same dimensions as the input array — Specify different scale factors for

each element of the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.

Bias — Element-wise bias on input
0 (default) | scalar | array

Element-wise bias on the input to the scaling layer, specified as one of the following:

• Scalar — Specify the same bias for all elements of the input array.
• Array with the same dimensions as the input array — Specify a different bias for each

element of the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.
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Examples

Create Scaling Layer

Create a scaling layer that converts an input array U to the output array Y = 0.1.*U -
0.4.

sLayer = scalingLayer('Scale',0.1,'Bias',-0.4)

sLayer = 
  ScalingLayer with properties:

     Name: 'scaling'
    Scale: 0.1000
     Bias: -0.4000

  Show all properties

Confirm that the scaling layer scales and offsets an input array as expected.

predict(sLayer,[10,20,30])

ans = 1×3

    0.6000    1.6000    2.6000

You can incorporate sLayer into an actor network or critic network for reinforcement
learning.

Specify Different Scale and Bias for Each Input Element

Assume that the layer preceding the scalingLayer is a tanhLayer with three outputs
and that you want to apply a different scaling factor and bias to each out using a
scalingLayer. Since the tanhLayer outputs its channels along the third dimension, the
scale and bias must be 1-by-1-by-3 arrays.

scale = reshape([2.5 0.4 10],[1 1 3]);
bias = reshape([5 0 -50],[1 1 3]);
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Create the scalingLayer object.

sLayer = scalingLayer('Scale',scale,'Bias',bias);

Confirm that the scaling layer applies the correct scale and bias values to an array with
the expected dimensions.

testData = reshape([10 10 10],[1 1 3]);
predict(sLayer,testData)

ans = 
ans(:,:,1) =

    30

ans(:,:,2) =

     4

ans(:,:,3) =

    50

See Also
quadraticLayer

Topics
“Train DDPG Agent to Swing Up and Balance Pendulum”
“Create Policy and Value Function Representations”

Introduced in R2019a
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RL Agent
Reinforcement learning agent
Library: Reinforcement Learning Toolbox

Description
Use the RL Agent block to simulate and train a reinforcement learning agent in Simulink.
You associate the block with an agent stored in the MATLAB workspace or a data
dictionary as an agent object such as an rlACAgent or rlDDPGAgent object. You connect
the block so that it receives an observation and a computed reward. For instance,
consider the following block diagram of the rlSimplePendulumModel model.

3 Blocks — Alphabetical List

3-2



The observation input port of the RL Agent block receives a signal that is derived from
the instantaneous angle and angular velocity of the pendulum. The reward port receives
a reward calculated from the same two values and the applied action. You configure the
observations and reward computations that are appropriate to your system.

The block uses the agent to generate an action based on the observation and reward you
provide. Connect the action output port to the appropriate input for your system. For
instance, in the rlSimplePendulumModel, the action port is a torque applied to the
pendulum system. For more information about this model, see “Train DQN Agent to
Swing Up and Balance Pendulum”.

To train a reinforcement learning agent in Simulink, you generate an environment from
the Simulink model. You then create and configure the agent for training against that
environment. For more information, see “Create Simulink Environments for
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Reinforcement Learning”. When you call train using the environment, train simulates
the model and updates the agent associated with the block.

Ports

Input
observation — Environment observations
scalar | vector | nonvirtual bus

This port receives observation signals from the environment. Observation signals
represent measurements or other instantaneous system data. If you have multiple
observations, you can use a Mux block to combine them into a vector signal. To use a
nonvirtual bus signal, use bus2RLSpec.

reward — Reward from environment
scalar

This port receives the reward signal, which you compute based on the observation data.
The reward signal is used during agent training to maximize the expectation of the long-
term reward.

isdone — Flag to terminate episode simulation
logical

Use this signal to specify conditions under which to terminate a training episode. You
must configure logic appropriate to your system to determine the conditions for episode
termination. One application is to terminate an episode that is clearly going well or going
poorly. For instance, you can terminate an episode if the agent reaches its goal or goes
irrecoverably far from its goal.

Output
action — Agent action
scalar | vector | nonvirtual bus

Action computed by the agent based on the observation and reward inputs. Connect this
port to the inputs of your system. To use a nonvirtual bus signal, use bus2RLSpec.
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cumulative_reward — Total reward
scalar | vector

Cumulative sum of the reward signal during simulation. Observe or log this signal to track
how the cumulative reward evolves over time.

Dependencies

To enable this port, select the Provide cumulative reward signal parameter.

Parameters
Agent object — Agent to train
agent (default) | agent object

Enter the name of an agent object stored in the MATLAB workspace or a data dictionary,
such as an rlACAgent or rlDDPGAgent object. For information about agent objects, see
“Reinforcement Learning Agents”.

Provide cumulative reward signal — Add cumulative reward output port
off (default) | on

Enable the cumulative_reward block output by selecting this parameter.

See Also
bus2RLSpec | createIntegratedEnv

Topics
“Create Simulink Environments for Reinforcement Learning”
“Create Simulink Environment and Train Agent”

Introduced in R2019a
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